Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Development of a Nuclear Fuel Dissolution Monitor Based on Raman Spectroscopy

Robert Lascola, Patrick E. O'Rourke and David M. Immel
Sensors 24 (2) 607 (2024)
https://doi.org/10.3390/s24020607

Fusion waste requirements for tritium control: Perspectives and current research

Mark R. Gilbert, Žilvinas Zacharauskas, Philippa Almond, Naomi Scott-Mearns, Stephen Reynolds and Mikhail Yu. Lavrentiev
Fusion Engineering and Design 202 114296 (2024)
https://doi.org/10.1016/j.fusengdes.2024.114296

Analysing the impact of autocatalysis on the dissolution kinetics of uranium and plutonium mixed oxide powders by optical microscopy

German Garzon Losik, Sophie Lalleman, Martin Giraud, Alastair Magnaldo and Eric Schaer
Hydrometallurgy 216 106010 (2023)
https://doi.org/10.1016/j.hydromet.2022.106010

Influence of Sintering Conditions on the Structure and Redox Speciation of Homogeneous (U,Ce)O2+δ Ceramics: A Synchrotron Study

Malvina Massonnet, Laurent Claparede, Julien Martinez, et al.
Inorganic Chemistry 62 (19) 7173 (2023)
https://doi.org/10.1021/acs.inorgchem.2c03945

Dissolution of (U,Th)O2 heterogeneous mixed oxides

C. Hours, L. Claparede, N. Reynier-Tronche, I. Viallard, R. Podor and N. Dacheux
Journal of Nuclear Materials 586 154658 (2023)
https://doi.org/10.1016/j.jnucmat.2023.154658

Impact of ruthenium metallic particles on the dissolution of UO2 in nitric acid

Thibault Kaczmarek, Stéphanie Szenknect, Laurent Claparède, et al.
npj Materials Degradation 6 (1) (2022)
https://doi.org/10.1038/s41529-022-00246-0

Mechanochemical activation and oxidation of U(iv)O2

Dmytro V. Kravchuk and Tori Z. Forbes
Chemical Communications 58 (28) 4528 (2022)
https://doi.org/10.1039/D2CC00242F

Recovery and separation of uranium in a microbial fuel cell using a titanium dioxide nanotube array cathode

Wenbin Liu, Leiming Lin, Ying Meng, et al.
Environmental Science: Nano 8 (8) 2214 (2021)
https://doi.org/10.1039/D1EN00270H

Dissolution of Th0.25U0.75O2 sintered pellets: Impact of nitrate ions and nitrous acid

Thomas Dalger, Laurent Claparede, Stéphanie Szenknect, Philippe Moisy and Nicolas Dacheux
Hydrometallurgy 204 105717 (2021)
https://doi.org/10.1016/j.hydromet.2021.105717

Influence of the concentration of nitric acid on the composition of NOX gas evolved during the dissolution of nuclear fuel and its implications on the PUREX process

N. Desigan, N.K. Pandey and J.B. Joshi
Progress in Nuclear Energy 135 103704 (2021)
https://doi.org/10.1016/j.pnucene.2021.103704

Mechanistic Study of the Production of NOx Gases from the Reaction of Copper with Nitric Acid

Rebecca K. Carlson, Ping Yang, Samuel M. Clegg and Enrique R. Batista
Inorganic Chemistry 59 (23) 16833 (2020)
https://doi.org/10.1021/acs.inorgchem.0c00607

Effect of surface orientation on dissolution rate and surface dynamics of UO2 single crystals in nitric acid

Solène Bertolotto, Stéphanie Szenknect, Sophie Lalleman, et al.
Corrosion Science 176 109020 (2020)
https://doi.org/10.1016/j.corsci.2020.109020

Two-person game model of long-term safeguards for a final repository for spent nuclear fuel

Heejae Ju, Il-Soon Hwang and Sungyeol Choi
Progress in Nuclear Energy 118 103058 (2020)
https://doi.org/10.1016/j.pnucene.2019.103058

NOx speciation from copper dissolution in nitric acid/water solutions using FTIR spectroscopy

Jacquelyn M. Dorhout, Aaron S. Anderson, Enrique Batista, et al.
Journal of Molecular Spectroscopy 372 111334 (2020)
https://doi.org/10.1016/j.jms.2020.111334

Dissolution behavior of irradiated fuels in nitric acid and characteristics of insoluble residue

F. Liu, T. H. Yan, B. Li and G. A. Ye
Journal of Radioanalytical and Nuclear Chemistry 326 (1) 337 (2020)
https://doi.org/10.1007/s10967-020-07350-y

Microstructural evolution of UO2 pellets containing metallic particles of Ru, Rh and Pd during dissolution in nitric acid solution: 3D-ESEM monitoring

T. Cordara, S. Szenknect, R. Podor, et al.
Hydrometallurgy 188 182 (2019)
https://doi.org/10.1016/j.hydromet.2019.07.001

Dissolution behaviour of simulated MOX nuclear fuel pellets in nitric acid medium

N. Desigan, Dasarath Maji, K. Ananthasivan, N.K. Pandey, U. Kamachi Mudali and J.B. Joshi
Progress in Nuclear Energy 116 1 (2019)
https://doi.org/10.1016/j.pnucene.2019.03.027

A method for phenomenological and chemical kinetics study of autocatalytic reactive dissolution by optical microscopy. The case of uranium dioxide dissolution in nitric acid media

Philippe Marc, Alastair Magnaldo, Jérémy Godard and Éric Schaer
EPJ Nuclear Sciences & Technologies 4 2 (2018)
https://doi.org/10.1051/epjn/2017026

Kinetics of dissolution of Th0.25U0.75O2 sintered pellets in various acidic conditions

Thomas Dalger, Stéphanie Szenknect, Florent Tocino, Laurent Claparede, Adel Mesbah, Philippe Moisy and Nicolas Dacheux
Journal of Nuclear Materials 510 109 (2018)
https://doi.org/10.1016/j.jnucmat.2018.07.050

Kinetics of dissolution of UO 2 in nitric acid solutions: A multiparametric study of the non-catalysed reaction

T. Cordara, S. Szenknect, L. Claparede, et al.
Journal of Nuclear Materials 496 251 (2017)
https://doi.org/10.1016/j.jnucmat.2017.09.038