Issue
EPJ Nuclear Sci. Technol.
Volume 11, 2025
Euratom Research and Training in 2025: ‘Challenges, achievements and future perspectives’, edited by Roger Garbil, Seif Ben Hadj Hassine, Patrick Blaise, and Christophe Girold
Article Number 14
Number of page(s) 10
DOI https://doi.org/10.1051/epjn/2025017
Published online 14 May 2025
  1. S. Barbosa, R. Donner, G. Steinitz, Radon applications in geosciences – Progress & perspectives, Eur. Phys. J. Spec. Topics 224, 597 (2015) [CrossRef] [Google Scholar]
  2. W. Zahorowski, S. Chambers, A. Henderson-Sellers, Ground based radon-222 observations and their application to atmospheric studies, J. Environ. Radioact. 76, 3 (2004) [CrossRef] [Google Scholar]
  3. S. Chambers, A. Williams, W. Zahorowski, A. Griffiths, J. Crawford, Separating remote fetch and local mixing influences on vertical radon measurements in the lower atmosphere, Tellus B: Chem. Phys. Meteorol. 63, 843 (2011) [CrossRef] [Google Scholar]
  4. A.G. Williams, W. Zahorowski, S. Chambers, A. Griffiths, J.M. Hacker, A. Element, S. Werczynski, The vertical distribution of radon in clear and cloudy daytime terrestrial boundary layers, J. Atmos. Sci. 68, 155 (2011) [CrossRef] [Google Scholar]
  5. X. Chen, J. Paatero, V.-M. Kerminen, L. Riuttanen, J. Hatakka, V. Hiltunen, P. Paasonen, A. Hirsikko, A. Franchin, H.E. Manninen, et al., Responses of the atmospheric concentration of radon-222 to the vertical mixing and spatial transportation, Boreal Environ. Res. 21, 299 (2016) [Google Scholar]
  6. S.D. Chambers, S.-B. Hong, A.G. Williams, J. Crawford, A.D. Griffiths, S.-J. Park, Characterising terrestrial influences on Antarctic air masses using radon-222 measurements at King George Island, Atmos. Chem. Phys. 14, 9903 (2014) [CrossRef] [Google Scholar]
  7. S.D. Chambers, A.G. Williams, F. Conen, A.D. Griffiths, S. Reimann, M. Steinbacher, P.B. Krummel, L.P. Steele, M.V. van derSchoot, I.E. Galbally, et al., Towards a universal “baseline” characterisation of air masses for high-and low-altitude observing stations using Radon-222, Aerosol Air Qual. Res. 16, 885 (2016) [CrossRef] [Google Scholar]
  8. S.D. Chambers, W. Zahorowski, A.G. Williams, J. Crawford, A.D. Griffiths, Identifying tropospheric baseline air masses at Mauna Loa Observatory between 2004 and 2010 using radon-222 and back trajectories, J. Geophys. Res.: Atmos. 118, 992 (2013) [CrossRef] [Google Scholar]
  9. M.F. Lunt, M. Rigby, A.L. Ganesan, A.J. Manning, R.G. Prinn, S. O’Doherty, J. Mühle, C.M. Harth, P.K. Salameh, T. Arnold, et al., Reconciling reported and unreported HFC emissions with atmospheric observations, Proc. Natl. Acad. Sci. 112, 5927 (2015) [CrossRef] [Google Scholar]
  10. P.G. Canadell, et al., Global carbon and other biogeochemical cycles and feed backs, in The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (2021), pp. 673–816 [Google Scholar]
  11. H.D. Matthews, S. Wynes, Current global efforts are insufficient to limit warming to 1.5 C, Science 376, 1404 (2022) [CrossRef] [Google Scholar]
  12. WMO-GAW, WMO/TD-No. 1201, 1st International Expert Meeting on Sources and Measurements of Natural Radionuclides Applied to Climate and Air Quality Studies (2004) [Google Scholar]
  13. S. Biraud, P. Ciais, M. Ramonet, P. Simmonds, V. Kazan, P. Monfray, S. O’Doherty, T.G. Spain, S.G. Jennings, European greenhouse gas emissions estimated from continuous atmosphericmeasurements and radon 222 at Mace Head, Ireland, J. Geophys. Res.: Atmos. 105, 1351 (2000) [CrossRef] [Google Scholar]
  14. C. O’Dowd, D. Ceburnis, J. Ovadnevaite, A. Vaishya, M. Rinaldi, M.C. Facchini, Do anthropogenic, continental or coastal aerosol sources impact on a marine aerosol signature at Mace Head?, Atmos. Chem. Phys. 14, 10687 (2014) [CrossRef] [Google Scholar]
  15. W. Xu, J. Ovadnevaite, K.N. Fossum, C. Lin, R.-J. Huang, C. O’Dowd, D. Ceburnis, Aerosol hygroscopicity and its link to chemical composition in the coastal atmosphere of Mace Head: Marine and continental air masses, Atmos. Chem. Phys. 20, 3777 (2020) [CrossRef] [Google Scholar]
  16. A. Melintescu, S. Chambers, J. Crawford, A. Williams, B. Zorila, D. Galeriu, Radon-222 related influence on ambient gamma dose, J. Environ. Radioact. 189, 67 (2018) [CrossRef] [Google Scholar]
  17. S. Whittlestone, W. Zahorowski, Baseline radon detectors for shipboard use: Development and deployment in the First Aerosol Characterization Experiment (ACE 1), J. Geophys. Res.: Atmos. 103, 16743 (1998) [CrossRef] [Google Scholar]
  18. Y. Xia, H. Sartorius, C. Schlosser, U. Stöhlker, F. Conen, W. Zahorowski, Comparison of one- and two-filter detectors for atmospheric 222Rn measurements under various meteorological conditions, Atmos. Meas. Tech. 3, 723 (2010) [CrossRef] [Google Scholar]
  19. A. Röttger, S. Röttger, C. Grossi, A. Vargas, R. Curcoll, P. Otahal, M.A. Hernandez-Ceballos, G. Cinelli, S. Chambers, S.A. Barbosa, et al., New metrology for radon at the environmental level, Meas. Sci. Technol. 32, 124008 (2021) [CrossRef] [Google Scholar]
  20. S. Röttger, A. Röttger, F. Mertes, V. Morosch, T. Ballé, S. Chambers, Evolution of traceable radon emanation sources from MBq to few Bq, Appl. Radiat. Isotopes 196, 110726 (2023) [CrossRef] [Google Scholar]
  21. J. Paatero, J. Hatakka, R. Mattsson, I. Lehtinen, A comprehensive station for monitoring atmospheric radioactivity, Radiat. Prot. Dosim. 54, 33 (1994) [CrossRef] [Google Scholar]
  22. J. Paatero, J. Hatakka, T.H. Virtanen, Outdoor radon-222 in Arctic Finland, Environ. Sci.: Atmos. 3, 1453 (2023) [CrossRef] [Google Scholar]
  23. J. Paatero, J. Hatakka, K. Holmén, K. Eneroth, Y. Viisanen, Lead-210 concentration in the air at Mt. Zeppelin, Ny-Å lesund, Svalbard, Phys. Chem. Earth Parts A/B/C 28, 1175 (2003) [CrossRef] [Google Scholar]
  24. J. Paatero, Wet deposition of radon-222 progeny in Northern Finland Mea sured with an automatic precipitation gamma analyser, Radiat. Prot. Dosim. 87, 273 (2000) [CrossRef] [Google Scholar]
  25. S. Mirme, A. Mirme, A. Minikin, A. Petzold, U. Hõrrak, V.-M. Kerminen, M. Kulmala, Atmospheric sub-3 nm particles at high altitudes, Atmos. Chem. Phys. 10, 437 (2010) [CrossRef] [Google Scholar]
  26. M. Kulmala, S. Tuovinen, S. Mirme, P. Koemets, L. Ahonen, Y. Liu, H. Junninen, T. Petäjä, V.-M. Kerminen, On the potential of the Cluster Ion Counter (CIC) to observe local new particle formation, condensation sink and growth rate of newly formed particles, Aerosol Res. 2, 291 (2024) [CrossRef] [Google Scholar]
  27. C.W. Rella, H. Chen, A.E. Andrews, A. Filges, C. Gerbig, J. Hatakka, A. Karion, N.L. Miles, S.J. Richardson, M. Steinbacher, C. Sweeney, B. Wastine, C. Zellweger, High accuracy measurements of dry mole fractions of carbon dioxide and methane in humid air, Atmos. Meas. Tech. 6, 837 (2013) [CrossRef] [Google Scholar]
  28. ICOS RI, ICOS Atmosphere Station Specifications V2.0, edited by O. Laurent (2020) [Google Scholar]
  29. D. Cook, Surface Energy Balance System (SEBS) Instrument Handbook (2024) [CrossRef] [Google Scholar]
  30. R. Sullivan, D. Billesbach, E. Keeler, B. Ermold, S. Pal, Eddy Correlation Flux Measurement System (1997) [Google Scholar]
  31. J. Kyrouac, Y. Shi, M. Tuftedal, Atmospheric Radiation Mea surement (ARM) user facility Surface Meteorological Instrumentation (MET) 2024-01-01 to 2024-11-26, Eastern North Atlantic (ENA) Graciosa Island, Azores, Portugal (C1), Data set accessed 2024-11-28 at https://doi.org/10.5439/1786358 (2013) [Google Scholar]
  32. H. Schmid, Source areas for scalars and scalar fluxes, Bound. Layer Meteorol. 67, 293 (1994) [CrossRef] [Google Scholar]
  33. H. Zafrir, G. Haquin, U. Malik, S. Barbosa, O. Piatibratova, G. Steinitz, Gamma versus alpha sensors for Rn-222 long-term monitoring in geological environments, Radiat. Meas. 46, 611 (2011) [CrossRef] [Google Scholar]
  34. S. Barbosa, P. Miranda, E. Azevedo, Short-term variability of gamma radiation at the {ARM} Eastern North Atlantic facility (Azores), J. Environ. Radioact. 172, 218 (2017) [CrossRef] [Google Scholar]
  35. S. Barbosa, J.A. Huisman, E.B. Azevedo, Meteorological and soil surface effects in gamma radiation time series – Implications for assessment of earthquake precursors, J. Environ. Radioact. 195, 72 (2018) [CrossRef] [Google Scholar]
  36. S. Barbosa, N. Dias, C. Almeida, G. Silva, A. Ferreira, A. Camilo, E. Silva, Precipitation-driven gamma radiation enhancement over the Atlantic Ocean, J. Geophys. Res.: Atmos. 128, e2022JD037570 (2023) [CrossRef] [Google Scholar]
  37. R. Sullivan, D. Cook, E. Keeler, S. Pal, J. Kyrouac, Atmospheric Radiation Measurement (ARM) user facility Surface Energy Balance System (SEBS) (2014) [Google Scholar]
  38. S. Barbosa, Pre-processed Gamma Radiation Measurements at ENA (Graciosa Island, Azores) (2018), https://rdm.inesctec.pt/dataset/cs-2017-001 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.