Issue
EPJ Nuclear Sci. Technol.
Volume 11, 2025
Status and advances of Monte Carlo codes for particle transport simulation
Article Number 3
Number of page(s) 7
DOI https://doi.org/10.1051/epjn/2024031
Published online 21 January 2025
  1. J. Leppänen, M. Pusa, T. Viitanen, V. Valtavirta, T. Kaltiaisenaho, Ann. Nucl. Energy 82, 142 (2015) [CrossRef] [Google Scholar]
  2. M. Pusa, J. Leppänen, Nucl. Sci. Eng. 164, 140 (2010) [CrossRef] [Google Scholar]
  3. V. Rintala, H. Suikkanen, J. Leppänen, R. Kyrki-Rajamäki, Ann. Nucl. Energy 77, 223 (2015) [CrossRef] [Google Scholar]
  4. J. Leppänen, New Stochastic Geometry Type Based on Voronoi Tessellation in the Serpent 2 Monte Carlo Code, in Proc. M&C 2023, Niagara Falls, Canada, Aug. 13–17 (2023) [Google Scholar]
  5. J. Leppänen, V. Valtavirta, A. Rintala, V. Hovi, R. Tuominen, J. Peltonen, M. Hirvensalo, E. Dorval, U. Lauranto, R. Komu, Energies 15, 876 (2022) [CrossRef] [Google Scholar]
  6. U. Imke, V. Sanchez Espinoza, Sci. Technol. Nucl. Install. 2012, 465059 (2012) [CrossRef] [Google Scholar]
  7. R. Tuominen, V. Valtavirta, Ann. Nucl. Energy 180, 109447 (2023) [CrossRef] [Google Scholar]
  8. K. Lassmann, J. Nucl. Mater. 188, 295 (1992) [CrossRef] [Google Scholar]
  9. V. Sahlberg, A. Rintala, Development and First Results of a New Rectangular Nodal Diffusion Solver of Ants, in Proc. PHYSOR 2018, Cancun, Mexico, Apr. 22–26 (2018) [Google Scholar]
  10. A. Rintala, V. Sahlberg, Kerntechnik 84, 252 (2019) [CrossRef] [Google Scholar]
  11. A. Rintala, U. Lauranto, Ann. Nucl. Energy 190, 109868 (2023) [CrossRef] [Google Scholar]
  12. M. Hirvensalo, A. Rintala, V. Sahlberg, Triangular geometry model for Ants nodal neutronics solver, in Proc. M&C 2021, Virtual conference, Oct. 3–7 (2021) [Google Scholar]
  13. V. Valtavirta, A. Rintala, U. Lauranto, Ann. Nucl. Energy 179, 109384 (2022) [CrossRef] [Google Scholar]
  14. A. Rintala, V. Valtavirta, J. Leppänen, Ann. Nucl. Energy 164, 108603 (2021) [CrossRef] [Google Scholar]
  15. V. Valtavirta, J. Peltonen, U. Lauranto, J. Leppänen, SuperFINIX – A Flexible-Fidelity Core Level Fuel Behavior Solver for Multi-Physics Applications, in Proc. NENE 2019, Portorož, Slovenia, Sept. 9–12 (2019) [Google Scholar]
  16. T. Ikonen, H. Loukusa, E. Syrjälahti, V. Valtavirta, J. Leppänen, V. Tulkki, Ann. Nucl. Energy 84, 111 (2015) [CrossRef] [Google Scholar]
  17. Apros process simulator website, https://www.apros.fi/en [Google Scholar]
  18. U.S. Nuclear Regulatory Commission, TRACE V5.0 PATCH 6 THEORY MANUAL – Field Equations, Solution Methods, and Physical Models, Washington, DC. (2020) [Google Scholar]
  19. R. Tuominen, R. Komu, V. Valtavirta, Coupling of TRACE with Nodal Neutronics Code Ants Using the Exterior Communications Interface and VTT’s Multiphysics Driver Cerberus, in Proc. PHYSOR 2022, Pittsburgh, PA, May 15–20 (2022) [Google Scholar]
  20. J. Leppänen, T. Viitanen, V. Valtavirta, Trans. Am. Nucl. Soc. 107, 1165 (2012) [Google Scholar]
  21. J. Leppänen, V. Valtavirta, T. Viitanen, M. Aufiero, Unstructured Mesh Based Multi-Physics Interface for CFD Code Coupling in the Serpent 2 Monte Carlo Code, in Proc. PHYSOR 2014, Kyoto, Japan Sep. 28 – Oct. 3 (2014) [Google Scholar]
  22. V. Valtavirta, J. Leppänen, T. Viitanen, Ann. Nucl. Energy 100, 50 (2017) [CrossRef] [Google Scholar]
  23. J. Leppänen, Nucl. Sci. Eng. 174, 318 (2013) [CrossRef] [Google Scholar]
  24. T. Viitanen, J. Leppänen, Nucl. Sci. Eng. 171, 165 (2012) [CrossRef] [Google Scholar]
  25. T. Viitanen, J. Leppänen, New Interpolation Capabilities for Thermal Scattering Data in Serpent 2, in Proc. PHYSOR 2016, Sun Valley, ID, May 1–6 (2016) [Google Scholar]
  26. J. Leppänen, A. Isotalo, Burnup calculation methodology in the Serpent 2 Monte Carlo code, in Proc. PHYSOR 2012, Knoxville, TN, Apr. 15–20 (2012) [Google Scholar]
  27. M. Garcí­a, J. Leppänen, V. Sanchez-Espinoza, Ann. Nucl. Energy 152, 108026 (2021) [CrossRef] [Google Scholar]
  28. J. Leppänen, Ann. Nucl. Energy 128, 63 (2019) [CrossRef] [Google Scholar]
  29. B.L. Sjenitzer, J.E. Hoogenboom, Nucl. Sci. Eng. 175, 94 (2013) [CrossRef] [Google Scholar]
  30. V. Valtavirta, M. Hessan, J. Leppänen, Delayed Neutron Emission Model for Time Dependent Simulations with the Serpent 2 Monte Carlo Code – First Results, in Proc. PHYSOR 2016, Sun Valley, ID, May 1–6 (2016) [Google Scholar]
  31. R. Tuominen, V. Valtavirta, J. Leppänen, Ann. Nucl. Energy 129, 224 (2019) [CrossRef] [Google Scholar]
  32. J. Leppänen, M. Pusa, E. Fridman, Ann. Nucl. Energy 96, 126 (2016) [CrossRef] [Google Scholar]
  33. Z. Liu, K. Smith, B. Forget, J. Ortensi, Ann. Nucl. Energy 112, 507 (2018) [CrossRef] [Google Scholar]
  34. Z. Liu, K. Smith, B. Forget, Group-wise tally scheme of incremental migration area for Cumulative Migration Method, in Proc. PHYSOR 2018, Cancun, Mexico, Apr. 22–26 (2018) [Google Scholar]
  35. I. Bilodid, S. Mittag, Ann. Nucl. Energy 37, 1208(2010) [CrossRef] [Google Scholar]
  36. V. Valtavirta, J. Leppänen, A Novel Monte Carlo Leakage Correction for Serpent 2, in Proc. M&C 2021, Virtual conference, Oct. 3–7 (2021) [Google Scholar]
  37. V. Valtavirta, Y. Bilodid, Critical Spectrum Burnup Calculations with Serpent Monte Carlo Code, in Proc. M&C 2023, Niagara Falls, Canada, Aug. 13–17 (2023) [Google Scholar]
  38. E. Fridman, J. Leppänen, Ann. Nucl. Energy 38, 1399 (2011) [CrossRef] [Google Scholar]
  39. K.S. Smith, Prog. Nucl. Energy 101, 360 (2017) [CrossRef] [Google Scholar]
  40. R.J.J. Stamm’ler, M.J. Abbate, Methods of Steady-State Reactor Physics in Nuclear Design (Academic Press, 1983) [Google Scholar]
  41. D. Knott, A. Yamamoto, in Handbook of Nuclear Engineering (Springer, 2010), chap. 9, pp. 913–1239 [CrossRef] [Google Scholar]
  42. V. Valtavirta, A. Rintala, Ann. Nucl. Energy 190, 109878 (2023) [CrossRef] [Google Scholar]
  43. J. Leppänen, M. Aufiero, E. Fridman, R. Rachamin, S. van der Marck, Ann. Nucl. Energy 65, 272 (2014) [CrossRef] [Google Scholar]
  44. T. Kaltiaisenaho, Comput. Phys. Commun. 252, 107143 (2020) [CrossRef] [Google Scholar]
  45. J. Leppänen, T. Kaltiaisenaho, V. Valtavirta, M. Metsälä, Development of a Coupled Neutron/Photon Transport Mode in the Serpent 2 Monte Carlo Code, in Proc. M&C 2017, Jeju, Korea, Apr. 16–20 (2017) [Google Scholar]
  46. J. Leppänen, Ann. Nucl. Energy 176, 109259 (2022) [CrossRef] [Google Scholar]
  47. J. Leppänen, M. Aufiero, Development of an Unstructured Mesh Based Geometry Model in the Serpent 2 Monte Carlo Code, in Proc. PHYSOR 2014, Kyoto, Japan Sep. 28 – Oct. 3 (2014) [Google Scholar]
  48. D. Pelowitz, MCNP6 User’s Manual: Appendix C Mesh-Based WWINP, WWOUT, and WWONE File Format, LA-CP-13-00634, Los Alamos National Laboratory, 2013 [Google Scholar]
  49. J. Leppänen, Nucl. Technol 205, 1416 (2019) [CrossRef] [Google Scholar]
  50. J. Leppänen, M. Jokipii, Global Variance Reduction Scheme with Self-Adaptive Weight-Window Mesh in Serpent 2, in Proc. M&C 2019, Portland, OR, Aug. 25–29 (2019) [Google Scholar]
  51. M. Aufiero, A. Bidaud, M. Hursin, J. Leppänen, G. Palmiotti, S. Pelloni, P. Rubiolo, Ann. Nucl. Energy 85, 245 (2015) [CrossRef] [Google Scholar]
  52. M. Aufiero, M. Martin, M. Fratoni, Ann. Nucl. Energy 96, 295 (2016) [CrossRef] [Google Scholar]
  53. V. Valtavirta, M. Aufiero, J. Leppänen, Collision-history based sensitivity/perturbation calculation capabilities in Serpent 2.1.30, in Proc. BEPU 2018, Lucca, Italy, May 13–18 (2018) [Google Scholar]
  54. V. Valtavirta, Tech. Rep. VTT-R-04681-18, VTT Technical Research Centre of Finland Ltd, 2018 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.