Issue |
EPJ Nuclear Sci. Technol.
Volume 9, 2023
Euratom Research and Training in 2022: the Awards collection
|
|
---|---|---|
Article Number | 8 | |
Number of page(s) | 7 | |
Section | Part 2: Radioactive waste management | |
DOI | https://doi.org/10.1051/epjn/2022037 | |
Published online | 17 January 2023 |
- B. Perot, et al., EPJ Nucl. Sci. Technol. 4, 3 (2018) [CrossRef] [EDP Sciences] [Google Scholar]
- IAEA, Safeguards Techniques and Equipment; International Atomic Energy Agency (IAEA, Vienna, Austria, 2011) [Google Scholar]
- R. Venkataraman, et al., Nucl. Instrum. Meth. A 579, 375 (2007) [CrossRef] [Google Scholar]
- H. Al Hamrashdi, S.D. Monk, D. Cheneler, Sensors 19, 2638 (2019) [CrossRef] [Google Scholar]
- D. Reilly, N. Ensslin, S. Hastings, Passive Nondestructive Assay Manual – PANDA (Los Alamos National Laboratory, Los Alamos, NM, USA, 1991) [Google Scholar]
- J. Petrović, A. Göök, B. Cederwall, Rapid imaging of special nuclear materials for nuclear nonproliferation and terrorism prevention, Sci. Adv. 7, eabg3032 (2021) [CrossRef] [Google Scholar]
- R. Stone, New type of imager could help spot smuggled nuclear materials, Science (19 May 2021), https://doi.org/10.1126/science.abj5464 [Google Scholar]
- B. Cederwall, et al., Isospin properties of nuclear pair correlations from the level structure of the self-conjugate nucleus 88Ru, Phys. Rev. Lett. 124, 062501 (2020) [CrossRef] [Google Scholar]
- M.M. Ter-Pogossian, M.E. Phelps, E.J. Hoffman, N.A. Mullani, A positron-emission transaxial tomograph for nuclear imaging (PETT), Radiology 114, 89 (1975) [CrossRef] [Google Scholar]
- M. Phelps, E. Hoffman, N. Mullani, M. Ter-Pogossian, Application of annihilation coincidence detection to transaxial reconstruction tomography, J. Nucl. Med. Soc. Nucl. Med. 16, 210 (1975) [Google Scholar]
- M. Ter-Pogossian, N. Mullani, D. Ficke, J. Markham, D. Snyder, Photon time-of-flight-assisted positron emission tomography, J. Comput. Assist. Tomogr. 5, 227239 (1981) [CrossRef] [Google Scholar]
- https://www.iva.se/en/published/new-100-list-research-for-sustainable-emergency-preparedness-with-commercial-potential/https://www.iva.se/en/published/new-100-list-research-for-sustainable-emergency-preparedness-with-commercial-potential/. [Google Scholar]
- M. Elfwing et al., Swedish nuclear fuel and waste management co., Report No. TR-13-14 (2013) [Google Scholar]
- https://strategiska.se/en/here-are-the-2021-industrial-doctoral-student-projectshttps://strategiska.se/en/here-are-the-2021-industrial-doctoral-student-projects. [Google Scholar]
- S. Agostinelli, et al., Nucl. Instrum. Meth. A 506, 250 (2003) [CrossRef] [Google Scholar]
- P. Talou, et al., Eur. Phys. J. A 54, 9 (2018) [CrossRef] [Google Scholar]
- J. Verbeke, J. Randrup, R. Vogt, Comput. Phys. Commun. 222, 263 (2018) [CrossRef] [Google Scholar]
- T. Mitchell, Machine Learning (McGraw Hill, New York, 1997) [Google Scholar]
- C. Fu, et al., Ann. Nucl. Energy 120, 410 (2018) [CrossRef] [Google Scholar]
- P.E. Keller, et al., IEEE Trans. Nucl. Sci. 42, 709 (1995) [CrossRef] [Google Scholar]
- M. Kamuda, J. Zhao, K. Huff, Nucl. Instrum. Meth. A 954, 161385 (2020) [CrossRef] [Google Scholar]
- A.D. Nicholson, et al., IEEE Trans. Nucl. Sci. 67, 1968 (2020) [CrossRef] [Google Scholar]
- R. Sheatsley, et al., IEEE Sens. J. 21, 9994 (2021) [CrossRef] [Google Scholar]
- G. D’Agostini, Nucl. Instrum. Meth. A 362, 487 (1995) [CrossRef] [Google Scholar]
- W.N. Mascarenhas, et al., IEEE Nucl. Sci. Symp. Conf. Rec. 1, 185 (2006) [Google Scholar]
- B.E. Watt, Phys. Rev. 87, 1037 (1952) [CrossRef] [Google Scholar]
- ANSI N42.35-2016, American national standard for evaluation and performance of radiation detection portal monitors for use in homeland security, https://doi.org/10.1109/IEEESTD.2016.7551097 [Google Scholar]
- https://eljentechnology.com/products/liquid-scintillators/ej-301-ej-309 (accessed 5 Dec. 2021) [Google Scholar]
- J. Vasiljević, B. Cederwall, Appl. Sci. 12, 9001 (2022) [CrossRef] [Google Scholar]
- Sealed Radiation Sources, Product information – Eckert & Ziegler Nuclitec GmbH, Rev. 07/2009 [Google Scholar]
- J. Vasiljević, A. Göök, F. Ekenborg, A. Puranen, B. Cederwall (to be published) [Google Scholar]
- N. Zaitseva, et al., Nucl. Instrum. Meth. A 668, 88 (2012) [CrossRef] [Google Scholar]
- F. Liang, J. Smith, IEEE Trans. Nucl. Sci. 67, 927 (2020) [CrossRef] [Google Scholar]
- H. Ing, M. Smith, M. Koslowsky, H. Andrews, Proc. SPIE 9455, 945506 (2015) [CrossRef] [Google Scholar]
- N. Dinar, et al., Nucl. Instrum. Meth. A 935, 35 (2019) [CrossRef] [Google Scholar]
- N. D’Olympia, et al., Nucl. Instrum. Meth. A 763, 433 (2014) [CrossRef] [Google Scholar]
- R. Gunnink, Lawrence livermore national laboratory report UCRL-LR-03220 (April 1990) [Google Scholar]
- S. Abousahl, et al., Nucl. Instrum. Meth. A 368, 449 (1996) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.