EPJ Nuclear Sci. Technol.
Volume 8, 2022
Euratom Research and Training in 2022: challenges, achievements and future perspectives
Article Number 41
Number of page(s) 15
Section Part 2: Radioactive waste management
Published online 15 December 2022
  1. M.J. Apted, J. Ahn, Geological repository systems for safe disposal of spent nuclear fuels and radioactive waste (Woodhead Publishing, 2017) [Google Scholar]
  2. N. Chapman, A. Hooper, The disposal of radioactive wastes underground, Proc. Geol. Assoc. 123, 46 (2012) [CrossRef] [Google Scholar]
  3. G. De Marsily, E. Ledoux, A. Barbreau, J. Margat, Nuclear waste disposal: Can the geologist guarantee isolation? Parameters governing possible mechanisms of migration of radionuclides in geologic formations are discussed, Science 197, 519 (1977) [CrossRef] [Google Scholar]
  4. H.H. Hess, J. Adkins, W. Heroy, W. Benson, M. Hubbert, J. Frye, et al., The disposal of radioactive waste on land, report of the committee on waste disposal of the division of earth sciences, Natl. Acad. Sci.-Natl. Res. Counc. Publ. 519 (1957). [Google Scholar]
  5. B. Grambow, EURAD: A step change in european joint research programming towards safe radioactive waste management, in 45th Scientific Basis for Nuclear Waste Management Symposium (2021) [Google Scholar]
  6. C. Steefel, C. Appelo, B. Arora, D. Jacques, T. Kalbacher, O. Kolditz, et al., Reactive transport codes for subsurface environmental simulation, Comput. Geosci. 19, 445 (2015) [CrossRef] [MathSciNet] [Google Scholar]
  7. O. Bildstein, F. Claret, P. Frugier, RTM for waste repositories, Rev. Mineral. Geochem. 85, 419 (2019) [CrossRef] [Google Scholar]
  8. L. De Windt, N.F. Spycher, Reactive transport modeling: A key performance assessment tool for the geologic disposal of nuclear waste, Elements: Int. Mag. Mineral. Geochem. Petrol. 15, 99 (2019) [Google Scholar]
  9. P. Blanc, A. Lassin, P. Piantone, M. Azaroual, N. Jacquemet, A. Fabbri, et al., Thermoddem: A geochemical database focused on low temperature water/rock interactions and waste materials, Appl. Geochem. 27, 2107 (2012) [CrossRef] [Google Scholar]
  10. E. Giffaut, M. Grivé, P. Blanc, P. Vieillard, E. Colàs, H. Gailhanou, et al., Andra thermodynamic database for performance assessment: ThermoChimie, Appli. Geochem., 49, 225 (2014) [CrossRef] [Google Scholar]
  11. B. Lothenbach, D.A. Kulik, T. Matschei, M. Balonis, L. Baquerizo, B. Dilnesa, et al., Cemdata18: A chemical thermodynamic database for hydrated Portland cements and alkali-activated materials, Cement Conc. Res. 115, 472 (2019) [CrossRef] [Google Scholar]
  12. N.C.M. Marty, F. Claret, A. Lassin, J. Tremosa, P. Blanc, B. Madé, et al., A database of dissolution and precipitation rates for clay-rocks minerals, Appl. Geochem. 55, 108 (2015) [CrossRef] [Google Scholar]
  13. A. Soltani, K.A. Harries, B.M. Shahrooz, Crack opening behavior of concrete reinforced with high strength reinforcing steel, Int. J. Concr. Struct. Mater. 7, 253 (2013) [CrossRef] [Google Scholar]
  14. M.V. Villar, R.J. Iglesias, C. Gutiérrez-Álvarez, B. Carbonell, Pellets/block bentonite barriers: Laboratory study of their evolution upon hydration, Eng. Geol. 292, 106272 (2021) [CrossRef] [Google Scholar]
  15. C.I. Steefel, S.B. Yabusaki, K.U. Mayer, Reactive transport benchmarks for subsurface environmental simulation, Comput. Geosci. 19, 439 (2015) [CrossRef] [Google Scholar]
  16. J.T. Birkholzer, C.F. Tsang, A.E. Bond, J.A. Hudson, L. Jing, O. Stephansson, 25 years of DECOVALEX-Scientific advances and lessons learned from an international research collaboration in coupled subsurface processes, Int. J. Rock Mech. Min. Sci. 122, 103995 (2019) [CrossRef] [Google Scholar]
  17. O. Bildstein, F. Claret, V. Lagneau, Guest editorial to the special issue: Subsurface environmental simulation benchmarks, Comput. Geosci. 25, 1281 (2021) [CrossRef] [Google Scholar]
  18. J. Jatnieks, M. De Lucia, D. Dransch, M. Sips, Data-driven surrogate model approach for improving the performance of reactive transport simulations, Energy Proc. 97, 447 (2016) [CrossRef] [Google Scholar]
  19. A.M. Leal, S. Kyas, D.A. Kulik, M.O. Saar, Accelerating reactive transport modeling: On-demand machine learning algorithm for chemical equilibrium calculations, Transp. Porous Media 133, 161 (2020) [CrossRef] [Google Scholar]
  20. E. Laloy, D. Jacques, Speeding up reactive transport simulations in cement systems by surrogate geochemical modeling: Deep neural networks and k-nearest neighbors, Transp. Porous Media 143, 433 (2022) [CrossRef] [Google Scholar]
  21. E. Laloy, D. Jacques, Emulation of CPU-demanding reactive transport models: A comparison of Gaussian processes, polynomial chaos expansion, and deep neural networks, Comput. Geosci. 23, 1193 (2019) [CrossRef] [Google Scholar]
  22. N.I. Prasianakis, R. Haller, M. Mahrous, J. Poonoosamy, W. Pfingsten, S.V. Churakov, Neural network based process coupling and parameter upscaling in reactive transport simulations, Geochim. Cosmochim. Acta 291, 126 (2020) [CrossRef] [Google Scholar]
  23. E. Neeft, E. Weetjens, A. Vokal, M. Leivo, B. Cochepin, C. Martin, et al., Treatment of Chemical Evolution in National Programmes, D2.4 of the HORIZON 2020 project EURAD. EC Grant agreement no: 847593 (2020) [Google Scholar]
  24. J. Fernández, Reactive Transport Models of low Permeability Structured Porous and Fractured Media (2017) [Google Scholar]
  25. A. Nardi, A. Idiart, P. Trinchero, L.M. De Vries, J. Molinero, Interface COMSOL-PHREEQC (iCP), an efficient numerical framework for the solution of coupled multiphysics and geochemistry, Comput. Geosci. 69, 10 (2014) [CrossRef] [Google Scholar]
  26. J. van der Lee, L. De Windt, V. Lagneau, P. Goblet, Module-oriented modeling of reactive transport with HYTEC, Comput. Geosci. 29, 265 (2003) [CrossRef] [Google Scholar]
  27. L. Bilke, B. Flemisch, T. Kalbacher, O. Kolditz, R. Helmig, T. Nagel, Development of open-source porous media simulators: Principles and experiences, Transp. Porous Media 130, 337 (2019) [CrossRef] [Google Scholar]
  28. Y. Huang, H. Shao, E. Wieland, O. Kolditz, G. Kosakowski, Two-phase transport in a cemented waste package considering spatio-temporal evolution of chemical conditions, npj Mater, Degrad. 5, 4 (2021) [Google Scholar]
  29. V. Montoya, J. Garibay-Rodriguez, O. Kolditz, Hydro-geochemical processes in the emplacement cavern of a low and intermediate-level waste repository in an indurated clay-rock, in EGU General Assembly Conference Abstracts (2021) [Google Scholar]
  30. A. Idiart, J. Olmeda, M. Lavina, Modelling of concrete degradation – influence of concrete mix design. Report for the safety evaluation SE-SFL, in SKB R-19-14 (2019) [Google Scholar]
  31. J. Govaerts, D. Jacques, J. Samper, E. Neeft, V. Montoya, Model Abstraction Methods for Upscaling and Integration of Process Knowledge in Reactive Transport Models for Geological Disposal of Radioactive Waste. Final version as of 10.01.2022 of deliverable D2.18 of the HORIZON 2020 project EURAD. EC Grant agreement no: 847593 (2022) [Google Scholar]
  32. N. Seigneur, J. Corvisier, V. Lagneau, A. Dauzères, On coupling variable porosity and water activity with two-phase flow in reactive transport modelling, in Computational Methods in Water Resources XXII (2018) [Google Scholar]
  33. B. Bary, T. Helfer, O. Fandeur, J. Yvonnet, Q.C. He, D. Da, A phase field microcracking description coupled with viscoelastic concrete behavior, in WCCM XIII-The13th World Congress on Computational Mechanics (2018) [Google Scholar]
  34. V. Montoya, J. Poonoosamy, J. Garibay-Rodriguez, O. Kolditz, K. Yoshioka, Hydro-chemo-mechanical phase-field modeling of fracture propagation due to barite precipitation in porous media, in Goldschmidt Conference, Virtual (2021) [Google Scholar]
  35. J. Poonoosamy, M. Mahrous, E. Curti, D. Bosbach, G. Deissmann, S.V. Churakov, Th Geisler, N.I. Prasianakis, A lab-on-a-chip approach integrating in-situ characterization and reactive transport modelling diagnostics to unravel (Ba,Sr)SO4 oscillatory zoning, Sci. Rep. 11, 23678 (2021) [CrossRef] [Google Scholar]
  36. S. Rahal, A. Sellier, Influence of crack reclosure on concrete permeability, Theor. Appl. Fract. Mech. 100, 65 (2019) [CrossRef] [Google Scholar]
  37. A. Sellier, L. Buffo-Lacarrière, M. El Gonnouni, X. Bourbon, Behavior of HPC nuclear waste disposal structures in leaching environment, Nucl. Eng. Design 241, 402 (2011) [CrossRef] [Google Scholar]
  38. A. Millard, V. L’Hostis, Modelling the effects of steel corrosion in concrete, induced by carbon dioxide penetration, Eur. J. Environ. Civil Eng. 16, 375 (2012) [CrossRef] [Google Scholar]
  39. A. Sellier, A. Millard, A homogenized formulation to account for sliding of non-meshed reinforcements during the cracking of brittle matrix composites: Application to reinforced concrete, Eng. Fract. Mech. 213, 182 (2019) [CrossRef] [Google Scholar]
  40. L. Buffo-Lacarriere, A. Sellier, Chemo-mechanical modeling requirements for the assessment of concrete structure service life, J. Eng. Mech. 137, 625 (2011) [Google Scholar]
  41. C. Soulaine, S. Pavuluri, F. Claret, C. Tournassat, porousMedia4Foam: Multi-scale open-source platform for hydro-geochemical simulations with OpenFOAM, Environ. Modell. Softw. 145, 105199 (2021) [CrossRef] [Google Scholar]
  42. J. Haslinger, R. Blaheta, R.A. Mäkinen, Parameter identification for heterogeneous materials by optimal control approach with flux cost functionals, Math. Comput. Simul. 189, 55 (2021) [CrossRef] [Google Scholar]
  43. C. Tournassat, C.I. Steefel, T. Gimmi, Solving the Nernst-Planck equation in heterogeneous porous media with finite volume methods: Averaging approaches at interfaces, Water Resour. Res. 56, e2019WR026832 (2020) [CrossRef] [Google Scholar]
  44. E. Neeft, G. Deissmann, D. Jacques, Initial State of the Art on the Assessment of the Chemical Evolution of ILW and HLW Disposal Cells. Deliverable D2. 1 of the HORIZON 2020 project EURAD. EC Grant agreement no: 847593 (EURAD, 2022) [Google Scholar]
  45. E. Ahusborde, B. Amaziane, A. Baksay, G. Bator, D. Becker, A. Bednar, et al., State of the Art Report in the Fields of Numerical Analysis and Scientific Computing. Final version as of 16/02/2020 deliverable D4. 1 of the HORIZON 2020 project EURAD (EURAD, 2020) [Google Scholar]
  46. F.K. Frantz, A taxonomy of model abstraction techniques, in Proceedings of the 27th Conference on Winter Simulation (WSC ‘95) (IEEE Computer Society, Arlington, Virginia, USA, 1995), pp. 1413–1420. Available from: [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.