EPJ Nuclear Sci. Technol.
Volume 5, 2019
Progress in the Science and Technology of Nuclear Reactors using Molten Salts
Article Number 16
Number of page(s) 13
Section Physics
Published online 14 November 2019
  1. H. Bussier, S. Delpech, V. Ghetta, D. Heuer, D.E. Holcomb, V. Ignat’ev, E. Merle-Lucotte, J. Serp, The molten salt reactor (MSR) in generation IV: overview and perspectives, Prog. Nucl. Energy 77, 308 (2014) [Google Scholar]
  2. M.D. Grele, L. Gedeon, Forced-convection heat-transfer characteristics of molten FLiNaK flowing in an Inconel X system (National Advisory Committee for Aeronautics, 1954) [Google Scholar]
  3. H.W. Hoffman, J. Lones, Fused Salt Heat Transfer Part II: Forced Convection Heat Transfer in Circular Tubes Containing NaF-KF-LiF Eutectic, ORNL-1977, Oak Ridge National Laboratory, 1955 [Google Scholar]
  4. I.B. Vriesema, Aspects of Molten Fluorides as Heat Transfer Agents for Power Generation, WTHD No. 112, Delft University of Technology, 1979 [Google Scholar]
  5. V. Ignat’ev, et al., Heat Exchange During the Flow of a Melt of LiF-NaF-KF Fluoride Salts in a Circular Tube, Sov. At. Energy 57, 123 (1984) [Google Scholar]
  6. C.T. Ewing, et al., Radiant transfer of heat in molten inorganic compounds at high temperatures, J. Chem. Eng. Data 7,246 (1962) [CrossRef] [Google Scholar]
  7. M.V. Smirnov, V.A. Khoklov, E.S. Filatov, Thermal conductivity of molten alkali halides and their mixtures, Electrochim. Acta 32, 1019 (1987) [CrossRef] [Google Scholar]
  8. J. Ambrosek, M. Anderson, K. Sridharan, T. Allen, Current status of knowledge of the fluoride salt (FLiNaK) heat transfer, Nucl. Technol. 165, 166 (2009) [CrossRef] [Google Scholar]
  9. M.S. Sohal, M.A. Ebner, P. Sabharwall, P. Sharpe, Engineering database of liquid salt thermophysical and thermochemical properties (No. INL/EXT-10-18297), Idaho National Laboratory (INL), 2010 [Google Scholar]
  10. C. Xu, Z. Wang, Y. He, X. Li, F. Bai, Sensitivity analysis of the numerical study on the thermal performance of a packed-bed molten salt thermocline thermal storage system, Appl. Energy 92, 65 (2012) [CrossRef] [Google Scholar]
  11. P. Sabharwall, E.S. Kim, M. McKellar, N. Anderson, Process heat exchanger options for the advanced high temperature reactor (No. INL/EXT-11-21584), Idaho National Laboratory (INL), 2011 [Google Scholar]
  12. D.F. Williams, L.M. Toth, K.T. Clarno, Assessment of Candidate Molten Salt Coolants for the Advanced High-Temperature Reactor (AHTR), ORNL/TM-2006/12, Oak Ridge National Laboratory, Oak Ridge, TN, 2006 [CrossRef] [Google Scholar]
  13. G.J. Janz, R.P.T. Tomkins, Physical Properties Data Compilations Relevant to Energy Storage: IV Molten Salts: Data on Additional Single and Multi-Component Salt Systems, National Standard Reference Data System, National Bureau of Standards Report NSRDS-NBS 61 Part IV, 1981 [Google Scholar]
  14. T. Allen, Molten Salt Database, Nuclear Engineering and Engineering Physics Department, University of Wisconsin (2010), [Google Scholar]
  15. F. Menter, Zonal two equation kw turbulence models for aerodynamic flows, in 23rd fluid dynamics, plasmadynamics, and lasers conference (1993), p. 2906 [Google Scholar]
  16. W.S. Kim, et al., Performance of a variety of low Reynolds number turbulence models applied to mixed convection heat transfer to air flowing upwards in a vertical tube, Proc. Inst. Mech. Eng. C 218, 1361 (2004) [CrossRef] [Google Scholar]
  17. F. Menter, J. Carregal Ferreira, T. Esch, B. Konno, The SST Turbulence Model with Improved Wall Treatment for Heat Transfer Predictions in Gas Turbines, in Proceedings of the International Gas Turbine Congress, Tokyo, 2003 [Google Scholar]
  18. D.C. Wilcox, in Turbulence modeling for CFD (DCW industries, La Canada, CA, 1998), Vol. 2, pp. 172–180 [Google Scholar]
  19. Y. Chen, Z. Tang, N. Wang, Numerical prediction of turbulent convective heat transfer with molten salt in circular pipe, in NURETH-16, Chicago, IL, August 30-September 4, 2015 [Google Scholar]
  20. Y.M. Ferng, K.-Y. Lin, C.-W. Chi, CFD investigating thermal-hydraulic characteristics of FLiNaK salt as a heat exchange fluid, Appl. Thermal Eng. 37, 235 (2012) [CrossRef] [Google Scholar]
  21. F. Moukalled, L. Mangani, M. Darwish, An Advanced Introduction with OpenFOAM and Matlab, in The finite volume method in computational fluid dynamics (2016), pp. 3–8 [CrossRef] [Google Scholar]
  22. E.S. Chaleff, T. Blue, P. Sabharwall, Radiation heat transfer in the Molten Salt FLiNaK, Nucl. Technol. 196, 53 (2016) [CrossRef] [Google Scholar]
  23. Inconel X-750 Technical Data. High Temp Metals, 2015, 750data.php. Accessed November 2018 [Google Scholar]
  24. American Society of Mechanical Engineers, Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer: An American National Standard, American Society of Mechanical Engineers, 2009 [Google Scholar]
  25. A. Saltelli et al., Global Sensitivity Analysis (John Wiley Sons, 2008) [Google Scholar]
  26. A.E. Gheribi, D. Corradini, L. Dewan, P. Chartrand, C. Simon, P.A. Madden, M. Salanne, Prediction of the thermophysical properties of molten salt fast reactor fuel from first-principles, Mol. Phys. 112, 1305 (2014) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.