Open Access
EPJ Nuclear Sci. Technol.
Volume 5, 2019
Article Number 23
Number of page(s) 10
Published online 19 December 2019
  1. S.S. Leong, A. Jia, Y.W. Yee, W.F. Edith, Laser and electron‐beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs, J. Orthop. Res. 34, 369 (2015) [Google Scholar]
  2. S. Singh, S. Ramakrishna, R. Singh, Material issues in additive manufacturing: A review, J. Manuf. Process. 25, 185 (2017) [CrossRef] [Google Scholar]
  3. X. Lou, M. Song, P.W. Emigh, M.A. Othon, P.L. Andresen, On the stress corrosion crack growth behaviour in high temperature water of 316L stainless steel made by laser powder bed fusion additive manufacturing, Corros. Sci. 128, 140 (2017) [CrossRef] [Google Scholar]
  4. X. Lou, P.L. Andresen, R.B. Rebak, Oxide inclusions in laser additive manufactured stainless steel and their effects on impact toughness and stress corrosion cracking behavior, J. Nucl. Mater. 499, 182 (2018) [CrossRef] [Google Scholar]
  5. T. Niendorf, S. Leuders, A. Riemer, H.A. Richard, T. Tröster, D. Schwarze, Highly anisotropic steel processed by selective laser melting, Metall. Mater. Trans. B 44, 794 (2013) [CrossRef] [Google Scholar]
  6. K. Saeidi, X. Gao, Y. Zhong, Z.J. Shen, Hardened austenite steel with columnar sub-grain structure formed by laser melting, Mater. Sci. Eng. A 625, 221 (2015) [CrossRef] [Google Scholar]
  7. D. Kong, X. Ni, C. Dong, L. Zhang, C. Man, J. Yao, K. Xiao, X. Li, Heat treatment effect on the microstructure and corrosion behavior of 316L stainless steel fabricated by selective laser melting for proton exchange membrane fuel cells, Electrochim. Acta 276, 293 (2018) [CrossRef] [Google Scholar]
  8. T. Vilaro, C. Colin, J.D. Bartout, L. Nazé, M. Sennour, Microstructural and mechanical approaches of the selective laser melting process applied to a nickel-base superalloy, Mater. Sci. Eng. A 534, 446 (2012) [CrossRef] [Google Scholar]
  9. M. Ziętala, T. Durejko, M. Polański, I. Kunce, T. Płociński, W. Zieliński, M. Łazińska, W. Stępniowski, T. Czujko, K.J. Kurzydłowski, Z. Bojar, The microstructure, mechanical properties and corrosion resistance of 316L stainless steel fabricated using laser engineered net shaping, Mater. Sci. Eng. A 677, 1 (2016) [CrossRef] [Google Scholar]
  10. E. Liverani, S. Toschi, L. Ceschini, A. Fortunato, Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel, J. Mater. Process. Technol. 249, 255 (2017) [CrossRef] [Google Scholar]
  11. A. Leicht, U. Klement, E. Hryha, Effect of build geometry on the microstructural development of 316L parts produced by additive manufacturing, Mater. Charact. 143, 137 (2018) [CrossRef] [Google Scholar]
  12. P. Köhnen, C. Haase, J. Bültmann, S. Ziegler, J.H. Schleifenbaum, W. Bleck, Mechanical properties and deformation behavior of additively manufactured lattice structures of stainless steel, Mater. Des. 145, 205 (2018) [CrossRef] [Google Scholar]
  13. T. Kurzynowski, K. Gruber, W. Stopyra, B. Kuźnicka, E. Chlebus, Correlation between process parameters, microstructure and properties of 316L stainless steel processed by selective laser melting, Mater. Sci. Eng. A 718, 64 (2018) [CrossRef] [Google Scholar]
  14. D. Tomus, Y. Tian, P.A. Rometsch, M. Heilmaier, X. Wu, Influence of post heat treatments on anisotropy of mechanical behaviour and microstructure of Hastelloy-X parts produced by selective laser melting, Mater. Sci. Eng. A 667, 42 (2016) [CrossRef] [Google Scholar]
  15. Z. Wang, T.A. Palmer, A.M. Beese, Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing, Acta Mater. 110, 226 (2016) [Google Scholar]
  16. N.P. Lavery, J. Cherry, S. Mehmood, H. Davies, B. Girling, E. Sackett, S.G.R. Brown, J. Sienz, Effects of hot isostatic pressing on the elastic modulus and tensile properties of 316L parts made by powder bed laser fusion, Mater. Sci. Eng. A 693, 186 (2017) [CrossRef] [Google Scholar]
  17. A. Riemer, S. Leuders, M. Thöne, H.A. Richard, T. Tröster, T. Niendorf, On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting, Eng. Fract. Mech. 120, 15 (2014) [CrossRef] [Google Scholar]
  18. J.A. Cherry, H.M. Davies, S. Mehmood, N.P. Lavery, S.G.R. Brown, J. Sienz, Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting, Int. J. Adv. Manuf. Technol. 76, 869 (2015) [CrossRef] [Google Scholar]
  19. A.A. Deev, P.A. Kuznetcov, S.N. Petrov, Anisotropy of mechanical properties and its correlation with the structure of the stainless steel 316L produced by the SLM method, Phys. Procedia 83, 789 (2016) [CrossRef] [Google Scholar]
  20. R. Casati, J. Lemke, M. Vedani, Microstructure and fracture behavior of 316L austenitic stainless steel produced by selective laser melting, J. Mater. Sci. Technol. 32, 738 (2016) [CrossRef] [Google Scholar]
  21. R.L. Carr, Evaluating flow properties of solids, Chem. Eng. 72, 163 (1965) [Google Scholar]
  22. D. McGlinchey, Bulk solids handling: equipment selection and operation, 1st edn. (Blackwell Publising, New Jersey, 2008) [CrossRef] [Google Scholar]
  23. Design and Construction Rules for Mechanical Components of the FBR Nuclear Installations, 2007 [Google Scholar]
  24. D. Pfoertsch, C. Ruud, Penn State University, ICDD Grant-in-Aid, PDF 33-0397, 1983 [Google Scholar]
  25. A. Röttger, K. Geenen, M. Windmann, F. Binner, W. Theisen, Comparison of microstructure and mechanical properties of 316L austenitic steel processed by selective laser melting with hot-isostatic pressed and cast material, Mater. Sci. Eng. A 678, 365 (2016) [CrossRef] [Google Scholar]
  26. CEA, La technologie des RNR-Na, in: Réact. Nucl. À Caloporteur Sodium, Le Moniteur, 2014, p. 276 [Google Scholar]
  27. G. Was, Fundamentals of radiation materials science: metals and alloys (Springer, Berlin, 2017) [CrossRef] [Google Scholar]
  28. H.D. Carlton, A. Haboub, G.F. Gallegos, D.Y. Parkinson, A.A. MacDowell, Damage evolution and failure mechanisms in additively manufactured stainless steel, Mater. Sci. Eng. A 651, 406 (2016) [CrossRef] [Google Scholar]
  29. W. Shifeng, L. Shuai, W. Qingsong, C. Yan, Z. Sheng, S. Yusheng, Effect of molten pool boundaries on the mechanical properties of selective laser melting parts, J. Mater. Process. Technol. 214, 2660 (2014) [CrossRef] [Google Scholar]
  30. M. Montero Sistiaga, S. Nardone, C. Hautfenne, J. Van Humbeeck, Effect of heat treatment of 316L stainless steel produced by selective laser melting (SLM), in Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium − An Additive Manufacturing Conference, 2016, pp. 558–565, available at (accessed December 21, 2017) [Google Scholar]
  31. J. Suryawanshi, K.G. Prashanth, U. Ramamurty, Mechanical behavior of selective laser melted 316L stainless steel, Mater. Sci. Eng. A 696, 113 (2017) [CrossRef] [Google Scholar]
  32. R.M. Horn, M. Connor, D. Webber, J. Jackson, F. Bolger, Evaluation of additively manufactured materials for nuclear plant components, in: J.H. Jackson, D. Paraventi, M. Wright (Eds.), in Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems − Water Reactor (Springer International Publishing, Berlin 2018), pp. 1009–1020 [Google Scholar]
  33. Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza, T. Zhu, Additively manufactured hierarchical stainless steels with high strength and ductility, Nat. Mater. 17, 63 (2018) [CrossRef] [Google Scholar]
  34. R. Noel, The new code “RCC-MR” − Rules for design and construction of LMFBR components, Nucl. Eng. Des. 98, 297 (1987) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.