Issue
EPJ Nuclear Sci. Technol.
Volume 4, 2018
Special Issue on 4th International Workshop on Nuclear Data Covariances, October 2–6, 2017, Aix en Provence, France – CW2017
Article Number 45
Number of page(s) 6
Section Applied Covariances
DOI https://doi.org/10.1051/epjn/2018031
Published online 14 November 2018
  1. D. Rochman et al., Nuclear data uncertainty propagation: total Monte Carlo vs. covariances, J. Korean Phys. Soc. 59, 1236 (2011) [Google Scholar]
  2. A. Santamarina et al., Validation of th e new code package APOLLO2.8 for accurate PWR neutronics calculations in International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (SunValley, CD-ROM, 2013) [Google Scholar]
  3. J.J. Lautard et al., in Advanced Calculational Methods for Power Reactors (Cadarache, 1990), pp. 42–50 [Google Scholar]
  4. MIT Computational Reactor Physics Group, Benchmark for Evaluation And Validation of Reactor Simulations, Release rev 2.0.1, 2017 [Google Scholar]
  5. L.N. Usachev, in Perturbation Theory for the Breeding Factor and Other Ratios of Different Processes in a Reactor (Atomnaia Energiya, 1963), p. 472 [Google Scholar]
  6. M.L. Williams, Perturbation Theory for Nuclear Reactor Analysis (CRC Handbook of nuclear reactor calculations, 1986) [Google Scholar]
  7. J. Lewins, Importance, the Adjoint Function (Pergamon Press, 1965) [Google Scholar]
  8. G. Truchet et al., Computing adjoint-weighted kinetics parameters in TRIPOLI4 by the Iterated Fission Probability method, Ann. Nucl. Energy 85, 17 (2015) [Google Scholar]
  9. G. Truchet et al., Implementation and validation of reference sensitivity profile calculations in TRIPOLI4, in ICNC (2015) [Google Scholar]
  10. Y. Qiu et al., Computing eigenvalue sensitivity coefficients to nuclear data based on the CLUTCH method with RMC code, Ann. Nucl. Energy 88, 237 (2016) [Google Scholar]
  11. A. Santamarina et al., The JEFF3.1.1 Nuclear Data Library − JEFF Report 22: validation results from JEF-2.2 to JEFF-3.1.1 AEN data bank, 2009 [Google Scholar]
  12. N. Hfaiedh et al., Determination of the optimised SHEM mesh for neutron transport calculations, in Mathematics and Computation (2005) [Google Scholar]
  13. C. De Saint Jean et al., Uncertainty evaluation of nuclear reaction model parameters using integral and microscopic measurements with the CONRAD code, J. Korean Phys. Soc. 59, 1276 (2011) [Google Scholar]
  14. C. De Saint Jean et al., Estimation of multi-group cross section covariances of 238,235U, 239Pu, 241Am, 56Fe and 23Na, in PHYSOR (2012) [Google Scholar]
  15. E. Privas et al., Generation of U238 covariances matri- ces by using the integral data assimilation technique of the CONRAD code, in EPJ Web of Conferences 106 (2016) [Google Scholar]
  16. C. Wan et al., in International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (2017) [Google Scholar]
  17. C. Wan et al., Uncertainty analysis for the assembly and core simulation of BEAVRS at the HZP conditions, Nucl. Eng. Des. 315, 2011 (2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.