Open Access
EPJ Nuclear Sci. Technol.
Volume 2, 2016
Article Number 22
Number of page(s) 9
Published online 18 April 2016
  1. T. Fuketa, H. Sasajima, Y. Mori, K. Ishijima, Fuel failure and fission gas release in high burnup PWR fuels under RIA conditions, J. Nucl. Mater. 248, 249 (1997) [CrossRef] [Google Scholar]
  2. T. Fuketa, T. Sugiyama, Nuclear fuel behavior during RIA, in OCDE/NEA Workshop, Paris, France (2009) [Google Scholar]
  3. J. Papin et al., in Eurosafe Meeting, Paris, France (2003) [Google Scholar]
  4. J. Papin, B. Cazalis, J.M. Frizonnet et al., Summary and interpretation of the CABRI REP-Na program, Nucl. Technol. 157, 230 (2007) [CrossRef] [Google Scholar]
  5. V. Georgenthum et al., in WRFPM Conference , Seoul, Korea (2008) [Google Scholar]
  6. J. Desquines et al., in Proceedings of the ASTM conference on Zirconium in the Nuclear Industry , Stockholm, Sweden (2004) [Google Scholar]
  7. B. Michel, C. Nonon, J. Sercombe, F. Michel, V. Marelle, Simulation of pellet-cladding interaction with the pleiades fuel performance software environment, Nucl. Technol. 182, 124 (2013) [CrossRef] [Google Scholar]
  8. CAST3M, [Google Scholar]
  9. J. Sercombe, I. Aubrun, C. Nonon, Power ramped cladding stresses and strains in 3D simulations with burnup-dependent pellet–clad friction, Nucl. Eng. Des. 242, 164 (2012) [CrossRef] [Google Scholar]
  10. J. Sercombe et al., in TopFuel Conference , Orlando, Florida, USA (2010) [Google Scholar]
  11. M. Le Saux, J. Besson, S. Carassou, C. Poussard, X. Averty, A model to describe the anisotropic viscoplastic mechanical behavior of fresh and irradiated Zircaloy-4 fuel claddings under RIA loading conditions, J. Nucl. Mater. 378, 60 (2008) [CrossRef] [Google Scholar]
  12. B. Cazalis, J. Desquines, C. Poussard et al., The PROMETRA program: Fuel cladding mechanical behavior under high strain rate, Nucl. Technol. 157, 215 (2007) [CrossRef] [Google Scholar]
  13. A.H. de Ménibus, Q. Auzoux, O. Dieye et al., Formation and characterization of hydride blisters in Zircaloy-4 cladding tubes, J. Nucl. Mater. 449, 132 (2014) [CrossRef] [Google Scholar]
  14. V. Macdonald, D. Le Boulch, A.H. de Ménibus, J. Besson, Q. Auzoux, J. Crépin, T. Le Jolu, Fracture of Zircaloy-4 fuel cladding tubes with hydride blisters, Procedia Mater. Sci. 3, 233 (2014) [CrossRef] [Google Scholar]
  15. A. Hermann et al., in Proceedings of the 15th ASTM conference on Zirconium in the Nuclear Industry , Sunriver, Oregon, USA (2007) [Google Scholar]
  16. M. Le Saux, J. Besson, S. Carassou, A model to describe the mechanical behavior and the ductile failure of hydrided Zircaloy-4 fuel claddings between 25 °C and 480 °C, J. Nucl. Mater. 466, 43 (2015) [CrossRef] [Google Scholar]
  17. H.M. Chung, T.F. Kassner, Cladding metallurgy and fracture behavior during reactivity-initiated accidents at high burnup, Nucl. Eng. Des. 186, 411 (1998) [CrossRef] [Google Scholar]
  18. Y. Udagawa, T. Mihara, T. Sugiyama, M. Suzuki, M. Amaya, Simulation of the fracture behavior of Zircaloy-4 cladding under reactivity-initiated accident conditions with a damage mechanics model combined with fuel performance codes FEMAXI-7 and RANNS, J. Nucl. Sci. Technol. 51, 208 (2014) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.