Issue |
EPJ Nuclear Sci. Technol.
Volume 8, 2022
Euratom Research and Training in 2022: challenges, achievements and future perspectives
|
|
---|---|---|
Article Number | 42 | |
Number of page(s) | 9 | |
Section | Part 1: Safety research and training of reactor systems | |
DOI | https://doi.org/10.1051/epjn/2022033 | |
Published online | 15 December 2022 |
https://doi.org/10.1051/epjn/2022033
Review Article
Increase of nuclear installations safety by better understanding of materials performance and new testing techniques development (MEACTOS, INCEFA-SCALE, and FRACTESUS H2020 projects)
1
SCK CEN, Boeretang 200, 2400 Mol, Belgium
2
CIEMAT, Avda. Complutense 40, 28040 Madrid, Spain
3
Jacobs, Birchwood Park, Warrington, UK
* e-mail: tomasz.brynk@sckcen.be
Received:
8
April
2022
Received in final form:
4
June
2022
Accepted:
3
October
2022
Published online: 15 December 2022
Research to better understand the phenomena influencing materials and components’ performance is important for increasing the safety of Generation II and III nuclear plants. A crucial step for improving nuclear safety is the development of new experimental techniques that can provide the necessary data. The three H2020 projects presented in this paper, MEACTOS (2017–2022), INCEFA-SCALE (2020–2025), and FRACTESUS (2020–2024), cover the steps needed to realize those safety improvements. The goal of the MEACTOS project is to improve the resistance of critical locations, including welds, to environmentally-assisted cracking through optimizing surface machining and treatments. The project is currently in its final stage, and the complete analysis of the data is finished. The objective of INCEFA-SCALE is to improve predictions of component fatigue lifetime when subjected to Environmentally-Assisted Fatigue (EAF). The strategy consists of producing guidance on how to appropriately accommodate variable amplitude and plant-relevant loading in EAF assessments. Increasing the understanding of the EAF mechanism based on substantial testing, characterization, and analysis program will support the INCEFA-SCALE strategy. The FRACTESUS project will validate the use of miniaturized compact tension specimens by comparing the results of master curve-oriented fracture toughness tests performed with small and large specimens. The round-robin exercises will use irradiated and non-irradiated Reactor Pressure Vessel (RPV) materials. The material selection process is complete in time for the project to enter the testing phase. The output of the project will be beneficial from a long-term operation perspective and a saving in the material amount needed for RPV surveillance programs. Even though each project is devoted to different research areas, common aspects are clearly visible. All three projects investigate phenomena that are relevant to the performance and safe operation of the nuclear plant. Moreover, each project will provide valuable databases and analyses of test results for materials relevant to components in the nuclear plant. The output of these projects will be of great value to the nuclear industry. This paper presents the current progress for each project, emphasizing the common research domains between the projects.
© T. Brynk et al., Published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.