Issue |
EPJ Nuclear Sci. Technol.
Volume 3, 2017
|
|
---|---|---|
Article Number | 19 | |
Number of page(s) | 5 | |
DOI | https://doi.org/10.1051/epjn/2017014 | |
Published online | 16 June 2017 |
https://doi.org/10.1051/epjn/2017014
Regular Article
A role of electrons in zirconium oxidation
NRC Kurchatov Institute,
1, Kurchatov Sq.,
Moscow
123182, Russia
* e-mail: shimkevich_al@nrcki.ru
Received:
22
April
2016
Received in final form:
26
April
2017
Accepted:
29
May
2017
Published online: 16 June 2017
Growing the oxide scale on the zirconium cladding of fuel elements in pressured-water reactors (PWR) is caused by the current of oxygen anions off the waterside to the metal through the layer of zirconia and by the strictly equal inverse electronic current. This process periodically speeds up the corrosion of the zirconium cladding in the aqueous coolant due to the breakaway of the dense part of oxide scale when its thickness reaches 2 mkm. It is shown that the electronic resistivity of zirconia is not limiting the zirconium oxidation at working temperatures. For gaining this limitation, a metal of lesser valence than zirconium has to be added to this oxide scale up to 15%. Then, oxygen vacancies arise in the complex zirconia, increase its band-gap, and thus, sharply decrease the electronic conductivity and form the solid oxide electrolyte whose growth is inhibited in contact with water at working temperatures of PWR.
© P.N. Alekseev and A.L. Shimkevich, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.