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Abstract. The ability to perform sensitivity analysis has been enabled for the nuclear fuel cycle simulator
DYMOND through its coupling with the design and analysis toolkit Dakota. To test and demonstrate these
new capabilities, a transition scenario and multi-parameter study were devised. The transition scenario rep-
resents a partial transition from the US nuclear fleet to a closed fuel cycle with small modular LWRs and fast
reactors fueled by reprocessed used nuclear fuel. Four uncertain parameters in this transition were studied
– start date of reprocessing, total reprocessing capacity, the nuclear energy demand growth, and the rate at
which the fast reactors are deployed – with respect to their impact on four response metrics. The responses
– total natural uranium consumed, maximum annual enrichment capacity required, total disposed mass, and
total cost of the nuclear fuel cycle – were chosen based on measures known to be of interest in transition
scenarios [2] and to be significantly impacted by the varying parameters. Analysis of this study was performed
both from the direct sampling and through surrogate models developed in Dakota to calculate the global
sensitivity measures Sobol’ indices. This example application of this new capability showed that the most con-
sequential parameter to most metrics was the share of new build capacity that is fast reactors. However, for
the cost metric, the scaling factor of the energy demand growth was significant and had synergistic behavior
with the fast reactor new build share.

1 Introduction

The nuclear fuel cycle is a complicated system with many
feedback mechanisms that can have unintuitive effects
when transitioning between fuel cycles. Successfully ana-
lyzing a potential change in a fuel cycle, either due to
policy or emergence of a new technology, requires a nuclear
fuel cycle simulator (NFCS). However, NFCSs require
many free parameters to allow the flexibility to model
the large range of potential fuel cycles and facilities, with
many of these parameters being left to the judgement of
the user as there have been no real-world equivalents of
the potential reactors or facilities described. This free-
dom also creates parametric uncertainties – uncertainty
that is the result of the assumptions of the parameter’s
values. To better understand the models that are being
simulated and the results of these uncertainties, sensitiv-
ity analysis and uncertainty quantification (SA&UQ) is
incorporated into the NFCS calculations [1]. How system
performance changes in response to changes of uncertain
parameters is studied through sampling methods and sur-
rogate models. These are used to calculate a distribution

* e-mail: srichards@anl.gov

on system performance measures and to understand which
parameters, or parameter synergistic relationships, con-
tribute most to their variance. To perform this analysis,
a framework based on Design Analysis Kit for Optimiza-
tion and Terascale Application (DAKOTA) was developed
and interfaced with the NFCS DYMOND. DYMOND
allows for accurate representation of the dynamic changes
in nuclear fuel compositions through its coupling with
ORIGEN for depletion calculations and direct critical fuel
composition calculations. This analysis framework was
applied to an example nuclear fuel cycle transition sce-
nario to reveal both the parametric and the synergistic
effects between four free parameters and four response
metrics of significance. The free parameters in this study
were chosen based on experience of the limiting fac-
tors in the transition from the current U.S. once-through
nuclear fuel cycle to a closed cycle with reprocessing: when
reprocessing starts, the annual reprocessing capacity, the
growth of energy demand, and the rate at which advanced
fast reactors are deployed. The response metrics were cho-
sen to be in line with several of the evaluation criteria
chosen for the U.S. Nuclear Fuel Cycle Evaluation and
Screening Report [2] – natural uranium required, annual
enrichment capacity required, mass of nuclear waste that
requires disposal, and the levelized (in 2020 US$) cost of
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the fuel cycle transition as estimated based on data from
the Advanced Fuel Cycle Cost Basis Report [3].

2 Modeling capabilities

2.1 DYMOND

DYMOND [4] is a NFCS developed and maintained
by Argonne National Laboratory. The code models the
nuclear fuel cycle through hybrid modeling paradigms,
combining system dynamics, discrete event, and agent-
based modeling using the AnyLogic modeling platform
and depletion physics through coupling with ORI-
GEN2. The work flow of DYMOND uses these different
paradigms to manage the abstraction level of the nuclear
fuel cycle. Material flows, transport, and head-end pro-
cesses are modeled as stocks and flows within a system
with feedback mechanisms dictated by the higher def-
inition agents. Agent models are used for the reactors
and reprocessing with discrete event models dictating
their construction, operational state, and decommission-
ing. The model is organized in this manner to mirror
the level of granularity needed when studying poten-
tial benefits of technologies or policies on hypothetical
fuel cycles. The preserved component linking the model
abstraction levels is the composition of the materials at
key locations in the fuel cycle – at reactor facilities in
the core, in spent fuel storage, at reprocessing plants, in
separated storage, in storage awaiting disposal, and in
final disposal. DYMOND explicitly tracks 25 nuclides –
actinides that have the greatest impact on fuel recycling in
advanced reactor concepts – and currently a lumped mate-
rial composite of all fission products. The transmutation of
nuclear fuel in a reactor is calculated using pre-generated
reactor-specific depletion libraries in ORIGEN2. These
calculations determine the fuel composition after irradia-
tion and cooling from a reactor based on the reactor power
and cycle specifications. Decay of materials in all parts of
the fuel cycle is also accounted for through a simplified
Bateman equation solver for the explicitly tracked nuclides
that recalculates material compositions at each month of
the simulation. The coupling of ORIGEN also allows for a
more advanced feature – determination of fresh fuel com-
position requirements through a criticality search – as an
alternative to the commonly used fuel “recipes” or approx-
imate nuclide reactivity worth (i.e., Pu239 equivalence).
This feature more accurately determines fuel requirements
from reprocessed material streams for a wider range of
reactor designs with material-stream composition feed-
back mechanisms and minimal approximations. Though
the use of these more physically accurate modeling capa-
bilities is more computationally expensive, DYMOND
has been made compatible with both concurrent exe-
cution and multiple-processor parallelism to off-set the
computational cost.

2.2 Dakota

Dakota [5] is a standardized toolkit developed by Sandia
National Laboratory for optimization, global sensitivity

and variance analysis, parameter estimation, uncertainty
quantification, and verification. Dakota is designed as an
ease-of-use tool for interfacing optimization and analy-
sis methods with a wide range of engineering software
under otherwise difficult conditions. These difficult prob-
lems include those that adopt meta-level strategies such as
surrogate models and hybrid-optimization or multi-level
parallelism. It is thanks to this design that advanced mod-
eling techniques can be used in this study to overcome
difficulties that arise in NFCS such as computationally
expensive simulations that include both time-dependent
system evolution and evolution of the fuel composi-
tions through depletion, decay, and other physics. The
DYMOND/Dakota application in this study was per-
formed through direct sampling and the use of surrogate
models (a quadratic regression and Gaussian process
model) trained on the massive amount of data gener-
ated from the direct sampling of DYMOND. Dakota
is publicly released and available through Sandia at
dakota.sandia.gov. The main classes of problems that
Dakota is designed to solve are parameter studies, design
and analysis of computer experiments (DACE), uncer-
tainty quantification, optimization, and calibration. This
effort makes use of parameter studies via joint variation
on a multidimensional grid to generate global sensitiv-
ity measures using Monte Carlo sampling methods (Latin
Hypercube Sampling). The goal is to use sensitivity anal-
ysis techniques to identify which of the design parameters
have the most influence on the response quantities. This
information is useful as both an assessment of the behav-
ior of response functions as well as a preliminary step
in the optimization of a model by limiting the param-
eter space that needs to be explored. For this work,
Sobol’ indices from the parameteric study were chosen
from the available measures for sensitivity analysis in
Dakota. Sobol’ indices provide a global, as opposed to
local, measure of the importance of parameters. There are
other options for measuring global sensitivity in Dakota,
however, Sobol’ indices provide a greater quantification
of synergistic effects. The Dakota interface allows these
tools to be applied to DYMOND, and a coupling of
the two codes to be developed. In Dakota, an inter-
face is what defines a function evaluation or response
creation but is otherwise considered a black-box. The
DYMOND/Dakota coupling scheme developed in this
work has Dakota act as the driver, generating the param-
eter inputs and managing either the serial or parallel
execution of the interface, whether that be the DYMOND
model or a data-generated surrogate model. The inter-
face that was created to allow Dakota to interact with
DYMOND makes use of the Dakota interfacing Python
module and a DYMOND-native distributed file system.
The Python module simplifies the interaction with Dakota
parameter and result files by managing the construction
and syntax, and the DYMOND-native file system allows
for data preservation and simulation modularity. These
two features allow for the study to be quickly and eas-
ily repeated in case of changes in response evaluations
or simulation/calculation errors that require restarting or
repeating.
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Table 1. Design and operational specifications for all reactors modeled in the study.

PWR BWR SMR GFR
Reactor power (MWe) 1007.00 1044.38 300.00 1100.00
Capacity factor 0.92 0.93 0.92 0.89
Thermal efficiency 0.35 0.34 0.31 0.5
Equilibrium burnup
(GWd/MTHM) 50.00 45.00 37.30 49.80

Number of batches 3 3 3 3
Cycle length (EFPD) 493 682 672 481
Operational lifetime 60 60 60 60
Annual fuel
requirement
(MTHM/yr)

19.35 23.29 8.64 14.35

Core size (MTHM) 85.24 139.79 51.89 63.75
Average fresh fuel
enrichment 4.54% 4.18% 4.54% N/A

3 Partial fuel cycle transition sensitivity
analysis study

3.1 Scenario description: fuel cycle transition to
SMRs and GFRs

The fuel cycle transition scenario that is the basis of the
study is a transition from the current U.S. nuclear fuel
cycle to a fuel cycle consisting of small modular light water
reactors (SMRs) and fast-spectrum reactors designed to
operate in an actinide burning, rather than breeding,
regime. For demonstration purposes only, the fast reac-
tor technology chosen for this study is the gas-cooled
fast reactor (GFR) since extensive studies have already
been performed using DYMOND on transitioning to the
sodium and molten-salt cooled fast reactor technologies.
Since the SMRs are LWRs that operate in once-through
mode with LEU, it is still technically part of the initial fuel
cycle, hence this can be considered a “partial” transition.

This partial transition is set to begin in 2020 with spent
fuel being stored for reprocessing starting in 2020, repro-
cessing beginning in 2035, advanced reactors first being
deployed in 2040, and the simulation terminating in 2100.
The scenario begins with the current U.S. nuclear fleet
consisting of legacy pressurized water reactors (PWR)
and boiling water reactors (BWR) where each is modeled
using the average power, capacity factor, fuel enrichment,
fuel batch reload mass, effective full power days per cycles,
number of in-core cycles per batch, final burnup, and ther-
modynamic efficiency of reactors of currently operating of
the same type (Tab. 1). These reactors are also modeled to
have the average operational lifetime of 60 years with reac-
tor start dates being back-calculated such that shutdowns
are in-line with currently announced plans for shutdown
or approved license extensions as of February, 2020 [6].

Deployment of announced and under construction reac-
tor projects as of January 2020 (AP-1000s Vogtle reactor
3 and 4 planned for start-up in 2021 and 2022 as well as
NuScale-UAMPs SMR installation planned for start-up in
2027) were also included and modeled as Gen-III PWRs
with design and operating specifications matching those

reported for the NuScale SMR [7]; the much larger AP-
1000 reactors were approximated as an installment of 4 of
these reactors. These Gen-III SMRs are deployed to meet
projected nuclear energy demand (Fig. 1) until advanced
reactors can begin to be deployed in 2040. The fast reac-
tors are based on a modified design of the GFR-2400 [8,9]
where the fuel stream has been allowed to have a greater
concentration of transuranics, and the operation of the
reactor reaches a higher average final burnup by extending
the cycle length. The deployment of the GFRs is designed
as a gradual market intrusion, linearly increasing to meet
a 40% share of new-build reactor-capacity, calculated on
a 5-year moving average, at the end of the simulation in
2100.

The deployment schedule for all reactors after 2027
(the last year that a new reactor is currently planned to
startup) is calculated to meet the projected nuclear energy
demand [10], following the guidelines of which reactors are
able to be deployed, with the smallest excess of additional
capacity possible. The caveat to those guidelines, though,
is that the first GFR is required to be started in 2040
regardless of demand, and that all reactors must operate
at their listed capacity factor for the entirety of their oper-
ating lifetime. This results in overproduction of energy
in 2048–2051 (see Fig. 2), equivalent to multiple SMRs’
capacities due to a predicted sharp decline in demand
that greatly exceeds the rate of loss of capacity from reac-
tors shutting down. However, outside of these years, the
deployment schedule closely matches the demand, with
excess capacities of less than one SMR-equivalent, while
also closely following a linear increase in advanced reac-
tor deployment rate. At the end of the simulation, this
ramping of advanced reactor deployment culminates in
GFRs being 31.2% of nuclear energy generating capacity
(Fig. 1).

While the LWRs in the study are refueled using enriched
uranium oxide fuel, the advanced reactors in the study are
fueled primarily from reprocessed fuel streams contain-
ing uranium, plutonium, and all other minor actinides.
No enrichment of the reprocessed material is performed,
instead the fuel composition is found using DYMOND’s
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Fig. 1. Base scenario energy production by reactor type.

Fig. 2. Base scenario U.S. nuclear energy demand and total
generating capacity.

criticality search functionality. This calculates a fabrica-
tion ratio of reprocessed material to a make-up material
(in the case of this study, either depleted uranium from
the enrichment process or natural uranium, which is con-
sidered sufficiently plentiful) for each fuel batch requested
by a reactor. The reprocessed material streams are dif-
ferentiated by their reactor of origin, and which of the
material streams is used for fuel fabrication is dictated
by the defined source priority of the reactor requesting
the fuel. The GFR design in the study prioritizes fuel
sources in the order of SMR, legacy PWR, legacy BWR,
and finally GFR with unlimited recycle. This priority was
chosen based on the reactivity worth of the reprocessed
spent fuel from each of the source reactors, prioritizing
the material stream that required the minimal actinide
content to achieve end-of-cycle criticality. The available
material for advanced reactor fuel fabrication can be seen
in Figure 3, which shows that there is no significant stock

Fig. 3. Reprocessed material available for use in GFR fuel
fabrication by reactor of material origin.

of SMR origin material and the stocks of legacy reactor
reprocessed materials are fully depleted by 2070 and 2078
for the PWR and BWR origin material, respectively. The
stock of reprocessed GFR material reaches a maximum
of 289.67 tonnes in 2084. This is also the date with the
greatest total amount of reprocessed material in storage
(292.79 tonnes).

The reprocessing facilities for this study are modeled as
bulk processes where only one facility of each type exists
and the plant capacity is fixed for the entirety of the fuel
cycle. There are two types of reprocessing processes mod-
eled: an aqueous process based on Purex facilities but with
no separation of uranium or plutonium from the minor
actinides, and a pyroprocessing process. Both types are
modeled to be batch processes (i.e., no mixing or distri-
bution of residency times) with 0.1% losses and a process
time of 1 year. However, the aqueous reprocessing requires
the used fuel to be cooled for 5 years post discharge and
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the pyroprocessing only requires 2 years of cooling before
reprocessing. The two methods of reprocessing are used to
account for the different characteristics and operational
knowledge in reprocessing of the used fuel streams. Aque-
ous reprocessing is used for the LWR used fuel due to the
existing facilities using aqueous reprocessing methods and
the demonstrated high capacity of these facilities to repro-
cess LWR fuel. Pyroprocessing was chosen for the GFR
used fuel stream due to the higher flexibility of the process
to allow for various fuel forms, higher temperatures of the
fuel, and fabrication of radioactive fuel.

In the preliminary work to develop the base scenario,
the capacity of the aqueous reprocessing was the main
determinant of whether there was a fuel shortage and
the pyroprocessing capacity determined the peak mass
of reprocessed material in storage. This is due to the
priorities given to the fuel streams. The reprocessing of
the LWR fuel must be high enough to keep up with the
fuel requirements for the deployment of the GFRs, with
startup cores requiring the most total mass. The repro-
cessing of the GFR fuel must build up a sufficient stockpile
so that once the GEN-II LWRs’ fuel has been used there
is enough to support the new reactor deployment until the
end of the simulation. The minimum capacities then are
correlated, as a lower capacity to reprocess the LWR fuel
results in less being available for starting up GFRs early
in the simulation, so a higher reprocessing capacity for the
GFR fuel is required to meet demand. However, this would
also result in the stock of LWR fuel from prior to the start
of the first GFR lasting longer. The minimum combined
capacity, with no fuel shortages, if reprocessing begins in
2035 is found to be approximately 1000 MTHM/year. In
order for the base scenario to be more representative of an
“average” scenario, rather than one on the periphery of the
parameter space for the study, the total capacity was set
at 1500 MTHM/year. This capacity was divided amongst
the two types of reprocessing: 1200 MTHM/year for the
aqueous process and 300 MTHM/year for pyroprocessing.

3.2 Study parameters

Four variables of the fuel cycle transition were chosen as
the parameters for this study –

1. The start date of the reprocessing facilities (RPS)
– This parameter controls the year that both repro-
cessing facilities would begin operation and ranged
between the beginning of the simulation (2020)
and the startup date of the first advanced reactor
(2040) with both facilities modeled as having the
same startup date. In the sampling of this param-
eter, only integer values were allowed – as that is
the modeling restriction placed on the variable by
DYMOND. However, when using surrogate models
for the calculation, RPS is considered continuous.

2. The annual reprocessing capacity (RPC) for the
reprocessing facilities – This parameter controls
annual capacity for each of the reprocessing types,
where both types are given the same capacity. The
capacities for both aqueous and pyroprocessing were
set as equal to reduce the number of parameters and

because of the negligible impact that varying the
pyroprocessing plant capacity has on the responses
chosen for this study. This parameter ranges between
500 MTHM/yr/facility and 3000 MTHM/yr/facility,
putting the entirety of the study safely in the regime
of the used advanced reactor fuel production rate
being the limiting factor.

3. A scaling factor for the year-to-year growth of
nuclear energy demand (GSF) – This parameter
scales the energy demand increase, or decrease,
between years based on the change in the base case
scenario. However, the demand prior to 2027 does
not change, as those years are considered constant
and set by current data rather than projections. The
range of GSF is from 0 to 4, where any factor less
than 1 would be a decrease in the demand growth
and a factor of 0 would be a constant demand.

4. The advanced reactor share of new-build reactor-
capacity at the end of the simulation (NBS) –This
parameter not only effects the build rate of advanced
reactors at the end of the simulation but also the
build rate of advanced reactors during the transition
as the new build share of advanced reactors is cal-
culated to scale linearly from the first deployment
in 2040 up to NBS in 2100. This parameter ranged
from a 10% final share (0.1) to 50% (0.5). Anything
less than 10% would result in very few GFRs being
constructed, and a share of greater than 50% would
result in too many scenarios having fuel shortages.

The sampling of these parameters was ensured to be
evenly distributed across the ranges through Dakota’s
Latin Hypercube sampling (LHS), as can be seen in the
distribution of sampling points in Figure 4. The sampling
of 2400 scenarios was uniformly distributed for all param-
eters with the lower quartile, median, and upper quartile
values equally dividing the range between the extreme
values. The results of this sampling, with failed scenar-
ios removed, were used in the training of the surrogate
models, with the number of samples chosen based on
the guidance in the Dakota user’s manual. The suggested
minimum number of samples for variance decomposition
studies is:

100 ∗ P ∗ (R+ 2) (1)

where P is the number of parameters being sampled
and R is the number of responses being generated from
the parameter set. This minimum is to ensure sufficient
coverage of the parameter space and a high statistical
significance of response variance. In the reduced parame-
ter space sampling, this same number of samples is used,
however, when using the surrogate models the number of
samples is increased to 10,000 as the computational cost
for increasing the number of samples is insignificant – on
the order of seconds of computational time.

3.3 Response evaluation

The purpose of the study is to quantify the sensitivity
of four response metrics: total mass of natural uranium
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Fig. 4. Distribution of the 2400 samples by parameter.

consumed in (MTU/GWe-yr), maximum annual enrich-
ment capacity required (Tonne SWU/GWe-yr), mass of
nuclear waste that requires disposal (MTHM/GWe-yr),
and the levelized (in 2020 US$/GWe-yr) cost of the fuel
cycle transition with component costs estimated based
on the Advanced Fuel Cycle Cost Basis Report [3]. These
four response metrics were chosen to closely resemble
several of the criteria used in the U.S. Nuclear Fuel Cycle
Evaluation and Screening Report [2]. The four response
metrics were calculated from values in DYMONDs output
– a database record of annual stocks, flows, compositions,
and state points at critical points in the fuel cycle –
and normalized to the total energy produced in the
scenario.

The calculations for each metric is explained below:

1. total mass of natural uranium consumed per energy
produced – This response is calculated as the differ-
ence in the stock of natural uranium at the beginning
of the simulation and the end of the simulation divided
by the summation of energy produced in each year.
This method is used, as opposed to tracking all out-
flows of natural uranium to the enrichment facility
and as make-up material in fuel fabrication, because
DYMOND does not consider mining activities and as
such there is no material stream that can increase the
initial stock of natural uranium.

2. Maximum annual enrichment capacity required per
energy produced – DYMOND does not explicitly place
a limit on the annual reprocessing capacity in the
model, it is instead set a priori to be whatever is
required to meet the enrichment needs of the fuel fabri-
cation for that given year. Therefore, the Tonne-SWU
enrichment capacity is calculated from the mate-
rial flows and compositions of the natural uranium,
depleted uranium, and enriched uranium through the

enrichment facility by:

WSWU = P ∗ V (xp) + T ∗ V (xT )− F ∗ V (xF )

where, V (x) = 1− 2x ∗ ln
(
1− x

x

)
and, F = P + T.

(2)

In these equations P is the mass of enriched uranium
produced, T is the mass of depleted uranium produced,
F is the mass of natural uranium required to produce
masses P and T , and x is the respective enrichments of
the material corresponding to the subscript. This value
is tracked for each reactor independently at each year
in a scenario, with the response using the maximum
annual total across all reactors normalized to the total
energy produced in the transition.

3. Mass of nuclear waste that requires disposal per energy
produced – All materials in the simulation that are not
being stored as a stock for another potential use (e.g.,
used fuel that will be reprocessed, depleted uranium
that can be used as make-up material in fuel fabri-
cation, etc.) will be directed to final disposal and are
considered nuclear waste. However, DYMOND tracks
all sources and material streams separately. In other
words, each reactor type will have two contributing
material streams – spent fuel directly from the reac-
tor, and high-level waste that is from the reprocessing
facility with that reactor-type of origin. This allows
for waste streams to be differentiated, but in the case
of this response metric all materials are assumed to
be equal. This assumption allows for the total mass
disposed to be calculated as the difference in mass in
disposal at the start of the simulation and at the end of
the simulation, with the addition of the mass of mate-
rial that is “waiting for disposal” due to cooling time
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Table 2. Fuel cycle costs from table S-1 in 2017 cost basis report [3].

Component CBR module Units 2017$ 2020$
Natural Uranium Mining and
Milling A1 $/kgU 86 89.44

Conversion Process B $/kgU 13 13.52
Enrichment C1 $/kg-SWU 125 130
LEU Fuel Fabrication (PWR
UO2)

D1-1 $/kgHM 400 416

LEU Fuel Fabrication (BWR
UO2)

D1-1 $/kgHM 400 416

Remote handled fuel fabrication
from reprocessed material D2/F2 $/kgHM 1400 1456

COEX Total Aqueous
reprocessing of UOX fuel F1 $/kgHM 1562 1624.48

Electrochemical and remote
handling fuel recycle D2/F2 $/kgHM 1200 1248

Co-located storage of reprocessed
transuranic fuel material E3-1B $/kgTRU 950 988

LWR Construction R1 $/kWe 4400 4576
LWR O&M Fixed Component R1 $/kWe-yr 73 75.92
LWR O&M Variable Component R1 $/kWh 0.0018 0.001872
Fast Reactor Construction R2 $/kWe 4100 4264
Fast Reactor O&M Fixed
Component R2 $/kWe-yr 76 79.04

Fast Reactor O&M Variable
Component R2 $/kWh 0.0022 0.002288

Aqueous reprocessing derived
HLW conditioning, storage, and
packaging

G1-1A $/kg 5700 5928

Electrochemical reprocessing
derived HLW conditioning,
storage, and packaging

G1-2A $/kg 17214 17902.56

Spent fuel conditioning, storage,
and packaging G2 $/kg 135 140.4

Geological Repository for spent
fuel L1 $/kg 600 624

Geological Repository for HLW L1 $/kg 6000 6240

restrictions. If material is in storage at any other point
in the model at the end of simulation, then it will not
be included in this response.

4. Levelized cost of the nuclear fuel cycle during transition
– The calculation of the levelized cost of the transition
is the most complicated, accounting for 20 separate
factors in the fuel cycle. The factors that are listed in
Table 2 are taken from table S-1 in the 2017 cost basis
report (CBR) [3]. These factors, and the assumptions
made in calculating them, are given in more descrip-
tion in the CBR modules listed in Table 2. Further
assumptions that were made in applying the costs in
the CBR modules to the DYMOND model are:
– COEX Total Aqueous reprocessing of UOX fuel is

assumed to match the process needed for the repro-
cessing of the LWR used fuel due to the product
stream being the closest match to that desired for
the FR design.

– The cost of fuel reprocessing using pyro-processing
can be applied through the same steps as the

aqueous reprocessing. The cost is based on studies
that were available at the time of the evaluation
and extrapolated costs based on the difference in
the e-chem process and the UREX process.

– Co-located storage costs are only calculated for cask
storage, with other storage methods to be con-
sidered included with the cost of the associated
facility.

– Fast Reactor construction and O&M costs estimated
based on experience with sodium fast reactor extrap-
olated to Nth of a kind scale deployment of large
reactors. Over the course of the simulation, this is
assumed to be a sufficiently accurate representation
of this cost. With hundreds of reactors being built,
the first-of-a-kind costs won’t significantly impact
the overall fuel cycle cost.

– Costs for final geological disposal of spent nuclear
fuel and HLW are only calculated for material that
reaches that stage of the simulation by the final sim-
ulated year. Any material in other storages in the
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model (such as fuel waiting to be reprocessed) is not
included in this cost.

The costs in Table 2 are being applied to either direct
values from the DYMOND model, or values that have to
be derived from other values due to the construction and
material management of the model. These values, how
they are represented in the output, and how costs are
applied to them are described going from the head end
of the fuel cycle through to final disposal, and all output
masses are in units of tonnes:

– the mining, milling, and conversion costs are all applied
at the same time and are calculated based on the sum
of the natural uranium, enriched uranium, and enrich-
ment tails flows. This value is in the output labeled as
“Mined ore”.

– The enrichment costs are relative to the annual
required kg-SWU. This is calculated in the DYMOND
model for all reactor types separately and is output as
“SWU required”.

– The fuel fabrication costs are calculated for all LWRs
together (PWR, BWR, and SMR) and the FR inde-
pendently. The FR is assumed to be the Nth reactor
type in the implementation and all other types are
assumed to be LWRs. This assumption is also true for
all other costs that are unique to reactor type such as
reprocessing, HLW storage, and construction and oper-
ating costs. The reprocessing costs are assessed upon
the material entering the reprocessing facility and is in
the output as “SNF reprocessed”.

– The cost of construction is assessed at the end of
the first year that the NPP is operational is scaled
based on plant capacity. A new NPP coming on line is
described as “New Capacity” in the output as opposed
to the ”Installed capacity” of reactors that were already
operational.

– O&M costs are assessed at the end of the year and
scaled by the amount of power that the NPP produced
during that year. The reactors’ power for the year is
output as “Produced electricity” and is given in units
MWe. This power is scaled to account for capacity
factor, and unless there is a fuel shortage, is therefore
accounting for refueling outages.

– The cost of SNF storage is assessed at the time that
the fuel goes to the reprocessing facility or is sent to
interim storage. The amount that enters these storages
is not directly modeled in DYMOND but are instead
calculated as the change in the stock of spent fuel at
the two locations plus the amount that was removed.
For the fuel at the reprocessing facility the values in
the output of the stock are labeled as “Spent fuel wait-
ing for RP”, and the output flows is equal to what is
going into the reprocessing plants. The storage facil-
ity inventory is labeled in the output as “Spent fuel
in storage” and the flow leaving storage is “Spent fuel
readying for disposal”. Both of these are assessed in the
same storage costs.

– The HLW going into storage is directly modeled in
DYMOND and is labeled in the output as “HLW to
storage”.

– The disposal costs of the spent fuel and the high level
waste are both calculated directly as those amounts of
each being disposed are given in the output as “Spent
fuel being disposed” and “HLW being disposed” respec-
tively. Both of these values are treated as a gross sum
with no origin or age distinction being made.

3.4 Fuel cycle transition “failure” determination

In the study, a fuel cycle transition scenario is consid-
ered to have failed if at any point in the simulation
an insufficient amount of energy is generated to meet
the demand. With the generation capacity of the fleet
and reactor deployments strictly calculated to exceed the
demand, this failure state can only be reached if an oth-
erwise operational reactor is not generating power. In the
current DYMOND model, this state can only be reached
through a fuel shortage. Furthermore, the state can only
be reached by a shortage in the primary fuel fabrication
material feed from reprocessed used nuclear fuel due to the
enrichment capacity at any given time step being equal to
the required capacity to meet demand. This then means
that fuel shortages, and therefore scenario failures, can
only occur for reactors that are defined to take fuel fabri-
cated from reprocessed material and no other source. The
advanced reactors in this study meet that definition.

A scenario failure is defined as such so that it does not
skew the sensitivity analysis results. Since all response
quantities are power specific, the decreased generation
during a fuel shortage could lead to adverse effects that
over-emphasize, or are counter to, the local sensitivity of
those parameters. Also, in the case that the results of a
sensitivity analysis study are used for optimization, or to
inform decisions, these failures could lead to undesired
outcomes such as the quantity of material going to final
disposal being minimized through reactor shutdowns due
to fuel shortages.

In global sensitivity analysis, failures result in mean-
ingless solutions. This is due to the sensitivity calculation
relying on matching sets of samples with identical param-
eter values in one dimension to be able to measure the
influence of the other parameters independent of that
dimension. One method for resolving this issue is limit-
ing the parametric space of the study. Assuming that the
failures are constrained to the extreme values of one or
more of the parameters, as is the case for this study, this
solution will provide an accurate global measure of the
sensitivity of the reduced region without introducing any
new assumptions or biases. However, if there were suc-
cessful scenarios in the removed parameter space, they
will no longer have influence over the results as poten-
tial solutions. As mentioned in Section 2.2, the other
solution for the issue of failed scenarios is the creation,
and sampling, of surrogate models for determining global
sensitivity measures. Dakota offers many surrogate mod-
eling methods including polynomial regression, Gaussian
process, and machine learning. In this study, a quadratic
regression model and Gaussian process model are created
from the successful transition scenarios from the 2400
samples of full parameter space described in Section 3.2.
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Fig. 5. Parameters of scenarios that resulted in a fuel shortage.

Calculating sensitivities from these surrogate models pre-
cludes the potential of failures while being able to sample
the full range of potential parameter values. However, this
also introduces a bias by being able to sample regions in
the parameter space that do not meet the requirements of
the transition scenario.

4 Results

4.1 ”Failure” space

In deterministic models, the ranges of parameter values,
or combinations of parameter values, that can result in a
“failure” will define a region referred to as a “failure” space.
In the case of this study, the parameters that most control
whether a transition scenario will have a fuel shortage,
and therefore be counted as a failure, are the reprocessing
start date (RPS), the reprocessing capacity (RPC), and
the share of new builds that are GFR advanced reactors
(NBS). RPC and NBS have a strong synergistic effect

on fuel shortages, as a function of those two parameters
defines one edge of the failure space. It is likely, given
the results of the sensitivity analysis, the energy demand
growth (GSF) also has a synergistic effect with NBS and
RPC to cause fuel shortages. However, either this effect
is secondary to that of RPC and NBS, or the sampling
region of the study does not contain that edge of the
failure space.

RPS defines a hard cut-off – a single parameter defined
edge of the failure space – for successful transitions. As
can be seen in Figure 5, any time to start reprocessing
after 2038 results in fuel shortages. This is from the char-
acteristics of the reprocessing plants and fuel fabrication
process – both have a process time of 1 year. If the first
reprocessing plant begins operation in 2039, regardless of
its capacity, no fuel can be ready for the first GFR to
startup at the start of 2040. This relationship therefore is
obvious at the reprocessing capacities studied, resulting in
202 of the 259 failed scencarios (out of 2400 total scenarios
sampled from 600 independent point). However, if either
the initial deployment of advanced reactors were higher,
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Fig. 6. The sample space of reprocessing capacity for each of the two plant types and the advanced reactor new build share at the
end of the simulation. (RED – fuel shortage, BLUE – successful transition.)

or if the reprocessing capacity in the fuel cycle were very
low, it is expected that this direct relationship would be
synergistic with the other parameters. This would be a
result of multiple years of accumulation of reprocessed
material being needed to meet the demand of the larger
startup fuel loading. In order to remove this failure path-
way from the limited region sampling, RPS was limited to
the range of 2020-2038. The other primary contributor to
fuel shortages, responsible for the other 57 failed scenarios,
is the relationship between NBS and RPC. Fuel shortages
arose at some point in the transition for cases with a high
NBS and a low RPC. These shortages are more difficult
to predict as they come at later times in the scenario.
Figure 6 illustrates how the relationship between the two
parameters define one edge of the failure space. The slight
overlap of the successes and failures in the figure is due
to it being a two dimensional projection and, as stated
earlier, GSF has a slight influence on this failure type at
this boundary point. Due to this boundary being curved,
it is more difficult to account for in the reduced sampling
space study. Rather than trying to match the curve of the
boundary, RPC was limited to the range of 785 MTHM/yr
to 3000 MTHM/yr. This effectively sets the reprocessing
capacity high enough so that there will be sufficient mate-
rial at even the highest deployment rate of GFRs in the
study.

Through this “Failure” space study, it was possible to
determine quantitatively two decisions that needed to
be made to remove all fuel shortage scenarios given the
assumptions: start reprocessing between 2020 and 2038
and keep the reprocessing capacity above 785 MTHM/yr.

4.2 Sobol’ indices

Sobol’ indices give a measure of the contribution of each
parameter to the variance observed in a response metric.

In the case of DACE with deterministic models, the vari-
ance is the same as the range of values of the output
that are possible given a range of values of the inputs,
i.e., the importance of a parameter to a response metric.
There are two measures provided by Sobol’ indices, the
main effect index and the total effect index. The main
effect index indicates the fraction of the variance that a
parameter is solely responsible for. This is measured by
the ratio of variance that is observed in the response met-
ric at each point that the parameter is constant, averaged
over all other parameters, to the total variance in the
response. The total effect index is a measure fraction of
the main effect of the parameter and all synergistic effects
that parameter has with the other parameters [5]. In this
context, a synergistic effect may be a constructive or
destructive interaction of any order between two or more
parameters that results in the behavior of the response
metric not being purely additive from the main effects of
the constituent parameters. The total effect is measured
as the ratio of the average variance in the response, when
only the parameter being measured is allowed to vary, to
the total variance in the response. This measurement is
akin to a quantification of the average behavior that would
be observed from doing many parametric studies on the
parameter being measured at different sets of values of
the other parameters. These measures of importance are
tabulated for the three methods of removing failures in
Tables 3–5. The negative numbers reported in these tables
are a numerical artifact resultant from the method used in
Dakota to calculate these values, signifying that the value
is below precision for the calculation given the number
of samples (approximately 0.01 for the limited param-
eter space sampling and 0.004 for the surrogate model
samplings).

While the three failure elimination methods agree on
the main contributors for each response metric, the differ-
ence in magnitudes of these importances indicates that
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Table 3. Main effect indices and total effect indices for the limited parameter space sampling.

Response Metric Parameter Si - Main Effect STOT - Total Effect

Natural Uranium
Consumed per Energy

Produced

Reprocessing Capacity
(RPC) 0.00E+00 0.00E+00

Energy Demand
Growth Scaling
(GSF)

4.05E-02 1.90E-02

AR New Build Share
(NBS) 9.37E-01 9.16E-01

Reprocessing Start
Date (RPS) 0.00E+00 0.00E+00

Normalized Maximum
Reprocessing Capacity

Required

Reprocessing Capacity
(RPC) 0.00E+00 0.00E+00

Energy Demand
Growth Scaling
(GSF)

2.00E-02 3.90E-02

AR New Build Share
(NBS) 8.92E-01 8.70E-01

Reprocessing Start
Date (RPS) 0.00E+00 0.00E+00

Mass of Waste
Disposed per Energy

Produced

Reprocessing Capacity
(RPC) 1.80E-01 1.28E-01

Energy Demand
Growth Scaling
(GSF)

2.38E-02 1.29E-02

AR New Build Share
(NBS) 8.46E-01 7.66E-01

Reprocessing Start
Date (RPS) -7.07E-03 8.80E-04

Levelized Cost of Fuel
Cycle Transition

Reprocessing Capacity
(RPC) 5.83E-03 3.86E-03

Energy Demand
Growth Scaling
(GSF)

4.86E-01 8.31E-01

AR New Build Share
(NBS) 3.74E-01 4.68E-01

Reprocessing Start
Date (RPS) 2.40E-03 1.57E-03

the removed range of values in the limited parameter
space has a significant effect on the total variance and
the distribution of the variance. Upon further inspection,
it is found that though the mean response values for the
reduced parameter space sampling are very similar to
the full sampling, with no mean being more than 0.1%
different, the variances are significantly smaller for all
responses. The least changed variance is that of the waste
disposed metric which is 95.3% of the true variance, but
the rest of the variances are more than 10% lower with the
cost metric variance being only 68.0%. This means that
the limited parameter space is not exactly representative
of the larger space and the effects observed are nonlin-
ear and non-additive. In particular, the importance of the
NBS doubles from the total parameter space, as measured
by the surrogate models, to the limited parameter space
for the cost of the transition. This would indicate that
much of the impact of the demand growth scaling factor

on cost comes from scenarios with low reprocessing capac-
ities. This is also seen in the other metrics, however, those
effects are not as pronounced. Unlike the reduced parame-
ter space study, the surrogate models, having been trained
on the original sampling of the full parameter space, show
good coverage of the responses. Neither surrogate model
has a mean response value that deviates more than 0.1%
from the training set or a response variance that is more
than 4.5% different to that observed in the training set.
However, the Gaussian process surrogate model provides a
better fit to the data and will be considered as the proper
measures of the global sensitivity for this study and all
values discussed will be taken from Table 5.

The four response metrics each have only one or two
variance contributing parameters. Though all four param-
eters are given measured index values and the surrogate
models have result precision, an index of less than 0.01 is
in effect statistical noise as it is two orders of magnitude



12 S. Richards and B. Feng: EPJ Nuclear Sci. Technol. 7, 26 (2021)

Table 4. Main effect indices and total effect indices for the quadratic regression surrogate model.

Response Metric Model Fit R2 Parameter Si - Main Effect STOT - Total Effect

Natural Uranium
Consumed per Energy

Produced
0.989

Reprocessing Capacity
(RPC) 5.33E-04 5.67E-05

Energy Demand
Growth Scaling
(GSF)

1.04E-03 4.27E-03

AR New Build Share
(NBS) 9.72E-01 9.74E-01

Reprocessing Start
Date (RPS) -5.24E-05 3.62E-05

Normalized Maximum
Reprocessing Capacity

Required
0.970

Reprocessing Capacity
(RPC) 3.38E-05 5.19E-05

Energy Demand
Growth Scaling
(GSF)

5.51E-04 3.42E-03

AR New Build Share
(NBS) 9.72E-01 9.75E-01

Reprocessing Start
Date (RPS) -2.60E-05 9.99E-05

Mass of Waste
Disposed per Energy

Produced
0.989

Reprocessing Capacity
(RPC) 2.05E-01 2.36E-01

Energy Demand
Growth Scaling
(GSF)

-1.86E-04 1.99E-03

AR New Build Share
(NBS) 7.49E-01 7.47E-01

Reprocessing Start
Date (RPS) 6.49E-04 1.58E-03

Levelized Cost of Fuel
Cycle Transition 0.800

Reprocessing Capacity
(RPC) 7.30E-03 1.09E-02

Energy Demand
Growth Scaling
(GSF)

7.98E-01 7.84E-01

AR New Build Share
(NBS) 1.83E-01 1.94E-01

Reprocessing Start
Date (RPS) -1.43E-03 1.73E-03

smaller than the primary contributors and bordering on
the precision possible from the surrogate model in this
case. The primary contributing parameter for three of the
four response metrics ( 97% to natural uranium consump-
tion, 95% to enrichment capacity needed, and 75% to
mass of waste disposed) is NBS, which also is one the
two contributors of the final response. The primary con-
tributor of the final response metric ( 76% to total cost
of the transition) is the demand growth scaling factor,
GSF.

The share of advanced reactors deployed directly, and
strongly, impacts the first two parameters due to the
increase in advanced reactors eliminating the deployment
of many LWRs which drive the need for natural ura-
nium and enrichment. The effect on waste disposed is
also direct in that more of the material being reprocessed
in the fuel cycle originates from LWRs at low NBS, which

generates more high level waste (HLW) as a byproduct
of reprocessing. Reprocessing capacity is a secondary con-
tributor to mass of waste disposed, with a positive trend
indicating an increase in reprocessing capacity results in
a greater quantity of waste produced, however this is a
result of the model setup. After the start of stockpiling
a reactor type’s used fuel for reprocessing, it only con-
tributes to waste as HLW coming from reprocessing. Due
to this – and that for most scenarios there is a surplus of
LWR UNF waiting to be reprocessed – the aqueous repro-
cessing capacity was the limiting factor in the quantity of
HLW produced. Similarly, the effect of NBS on the total
cost of the transition is not intuitive because the overall
cost of the advanced reactors and the associated facilities
are more expensive but an increase in the new build share
of advanced reactors reduces the transition cost. The cost
of fabricating fuel and operating an advanced reactor is
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Table 5. Main effect indices and total effect indices for the Gaussian process surrogate model.

Response Metric Model Fit R2 Parameter Si - Main Effect STOT - Total Effect

Natural Uranium
Consumed per Energy

Produced
1.0

Reprocessing Capacity
(RPC) -3.21E-04 1.45E-03

Energy Demand
Growth Scaling
(GSF)

-1.08E-03 6.26E-03

AR New Build Share
(NBS) 9.68E-01 9.72E-01

Reprocessing Start
Date (RPS) 1.08E-03 4.22E-04

Normalized Maximum
Reprocessing Capacity

Required
1.0

Reprocessing Capacity
(RPC) 4.11E-04 7.03E-03

Energy Demand
Growth Scaling
(GSF)

4.73E-03 1.95E-02

AR New Build Share
(NBS) 9.50E-01 9.80E-01

Reprocessing Start
Date (RPS) 4.51E-03 3.80E-03

Mass of Waste
Disposed per Energy

Produced
1.0

Reprocessing Capacity
(RPC) 2.03E-01 2.33E-01

Energy Demand
Growth Scaling
(GSF)

-3.26E-03 5.10E-03

AR New Build Share
(NBS) 7.49E-01 7.48E-01

Reprocessing Start
Date (RPS) 3.68E-03 2.41E-03

Levelized Cost of Fuel
Cycle Transition 1.0

Reprocessing Capacity
(RPC) 7.45E-03 5.80E-02

Energy Demand
Growth Scaling
(GSF)

7.62E-01 8.27E-01

AR New Build Share
(NBS) 1.57E-01 2.47E-01

Reprocessing Start
Date (RPS) -7.79E-03 1.31E-02

more expensive, but its construction costs are lower and
fuel utilization is higher making its direct costs overall
comparable for the timescale of the simulations but still
higher. The main difference that drives this relationship is
the cost of the associated facilities. For LWRs the cost of
the increased natural uranium and enrichment capacity is
directly tied to them, however, the cost of the reprocessing
facilities and fuel fabrication facility is not directly tied to
the deployment of advanced reactors and is instead set by
the parameter RPC. This effectively decouples this cost
from NBS.

The parameters and responses in this study were cho-
sen to have predictable relationships in order to be able to
judge the efficacy of the sensitivity analysis methods. As
such, one or two parameters were intended to be the dom-
inating contributors with little or no interaction for most
responses. This is what is observed with an increase of fast

reactors decreasing the natural uranium and reprocessing
requirements and also decreasing the quantity of waste to
be disposed all being indicated by NBS’s high importance
to those three metric. However, as indicated by the total
effect index for GSF for natural uranium consumption
and RPC for the cost of the fuel cycle transitions, there
are synergistic effects. The presence of these synergies is
indicated by the total effect index for the parameter being
much larger than the main effect. Although the individual
indices of each parameter do not directly indicate correla-
tions between parameters, such synergistic effects can be
inferred based on which parameters have a larger fraction
of the sum of the total indexes relative to their fraction
of the sum of the main indexes. In the case of natural
uranium consumption, NBS is the only directly contribut-
ing parameter and no other parameter has a meaningful
total index, making the relationship with GSF easy to
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infer. However, for the cost response metric, there are two
directly contributing factors – NBS and GSF. Given that
the total effect for both RPC and NBS are a greater frac-
tion of the total effect index than they are for the main
effects index, it can be inferred that the synergistic effect
is dependent on these two parameters and not GSF. This
effect is minor though, contributing approximately 5% of
the total variance.

Similar to how unexpected relationships are revealed by
the Sobol’ indices, relationships that were expected based
on prior experience were not exhibited. The most obvious
of these is an expected synergistic relationship between
reprocessing start date, reprocessing capacity, and lev-
elized cost of the transition. It would be expected that
starting a lower capacity reprocessing plant at an earlier
date would result in less total capacity being required for
the transition. Similar to how lower reprocessing capac-
ity resulted in a lower mass of waste being disposed, it
would also be expected that a later reprocessing start
date would result in a lower mass of waste being disposed.
These relationships not being reflected in the sensitiv-
ity analysis, together with the NBS relationship with
cost and the RPC relationship with mass of waste dis-
posed, further emphasizes potential shortcomings in the
scenario or study as formulated, as the relationships do
not reflect how the system would function in real-world
application.

5 Conclusions

This study demonstrates some of the powerful analy-
sis capabilities enabled through coupling the feature-rich
design and analysis kit, Dakota, to the dynamic NFCS
DYMOND. Through the development of this coupling,
DYMOND can now be used to identify important design
and policy parameters for transition scenarios and how
those parameters interact not only with a single response,
but also synergistically between all parameters and met-
rics of interest. This can also be done extremely rapidly
with many variations with only a front-end computational
expense by using previously generated scenarios to cre-
ate surrogate models. Though only two surrogate model
types and sensitivity analysis capabilities are demon-
strated in this study, the coupling is equally functional for
the machine learning surrogate model training and model
optimization methods available in Dakota. The capabil-
ities demonstrated, and the more advanced capabilities,
are not limited to the parameters and responses out-
lined here. Any arbitrary parameters and responses can
be analyzed through this coupling, with up to dozens of
each being able to be accommodated in a single study.
Furthermore, this capability allows for the analysis of
the fuel cycle modeling capabilities and aids in iden-
tifying shortcomings or erroneous assumptions in the
model or study. Due to the high level of variability
and feedback mechanisms present in fuel cycle transi-
tion modeling, it is possible to make assumptions or
formulate metrics that seem logical and plausible, even
after single parametric studies are performed. However,

multivariate and sensitivity analyses can help identify
some of the shortcomings resulting from the approx-
imations and assumptions adopted in these simulated
scenarios that may not have been revealed otherwise.
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